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ABSTRACT

The nutational stability of a dual-spin, quasi-rigid, axisymmetric spacecraft containing
a driven rotor is analyzed. The purpose is 10 examine a revised energy-sink stability theory
that properly accounts for the energy contribution of the motor. An inconsistency in the
development disproves the existing energy-sink theory's assumption that the motor of the
system contributes exactly enough energy to offset the frictional losses between the rotor
and the platform. Using the concept of core energy, the revised stability criteria for a dual-
spin, quasi-rigid, axisymmetric spacecraft containing a driven rotor is derived. An
expression for nutation angle as a function of core energy over time is then determined.
Numerical simulations are used to verify the revised energy-sink stability theory. The dual-
spin, quasi-rigid, axisymmetric system preseated by D. L. Mingori was chosen for the
simulation. Equations for angular momentum and total energy were necessary to validate
the numerical simulation and confirm aspects of the revised energy-sink stability theory.
These equations are derived from the first principles of dynamics and are included in the
analysis. An explicit relationship for core energy as a function of time does not exist.
Various models postulating core energy are presented and analyzed. The numerical
simulations of the computed nutation angles as a function of the postulated core energy
compare well with the actual nutation angles of the system to confirm the revised energy-
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to all dissipative elements
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angular momentum of the i th particle with respect to the
system center of mass

angular momentum of the rotor with respect to the system
center of mass

angular momentum of the rotor and the four rotor particle
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magnitude (Euclidean norm) of the angular momentum
vector

angular momentum of the rigid body along the b; th
coordinate axis, angular momentum of the rotor along the
b; th coordinate axis

angular momentum of the platform along the b;’th coordinate
axis

time rate of change of the angular momentum along the b; th
coordinate axis

principle moment of inertia of the rigid body about the b; th
coordinate axis, principle moment of inertia of the rotor
about the b; th coordinate axis

principle moment of inertia of the platform about the b;’ th
coordinate axis

total moment of inertia about the principal coordinate axis b;
maximum moment of inertia

minimum moment of inertia

spin moment of inertia of rigid body, spin moment of inertia
of rotor of the dual-spin system

spin moment of inertia of platform of the dual-spin system
total moment of inertia of dual spin system about the spin
axis v

transverse moment of inertia of the rigid body, transverse
moment of inertia of the rotor of the dual-spin system
transverse moment of inertia of the platform of the dual-spin
system

total moment of inertia of the dual-spin system about a
transverse axis

inertia ratio of a single body

inertia ratio of the dual-spin system

i = 1, 2, 3 when referencing coordinate axes,

i = 1, 2, 3, 4 when referencing particle masses,

i = imaginary number in Equations (20), (21)
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index that references a specific location of a variable’s vector
or matrix

quantity as defined in Equation (138)

spring constant of the rotor damper of the dual-spin system
spring constant of the platform damper of the dual-spin
system

mathematical constant, i = 1,2,3,4

distance between the rotor center of mass and the platform
center of mass

quantity defined in Equation (138)

quantity defined in Equation (138)

distance between B* and B*

moment vector of all forces acting on the system

moment about the b; th coordinate axis

mass of the rotor of the dual-spin system

mass of the platform of the dual-spin system

total mass of the dual-spin system

mass of the mass-spring-dashpot-system of the rotor. In
this paper it has the same value as the particle masses m;
mass of the mass-spring-dashpot-system of the platform. In
this paper it has the same value as the platform particle
masses mp’

mass of the i th particle located on the rotor, i =1, 2, 3, 4
mass of i th particle located on the platform, i=1, 2, 3,4
inertial reference frame

coordinate axes origin and center of mass of the rigid body
system, and coordinate axes origin and center of mass of the
dual-spin system B with coordinates b;”

quantity defined in Equation (107)

quantity defined in Equation (100)

quantity defined in Equation (44)

exponential factor for postulated rotor core energy model
exponential factor for postulated platform core energy model
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location of the i th paticle with respect to the inertial
reference frame N

location of the i th particle with respect to the reference
frame B

velocity of the i th particle with respect to the reference
frame B

definition of a differential mass element of the rotor with
respect to the reference frame B

definition of a differential mass element with respect to the
reference frame B

velocity of the differential mass element with respect to the
reference frame B

motor torque

net torque applied to the platform due to all forces

torque applied to the platform due to the motor

net torque applied to the rotor due to all forces

torque applied to the rotor due to the motor

torque applied to the platform due to the motor when both
the platform and the rotor are quasi-rigid

torque applied to the rotor due to the motor when both the
platform and the rotor are quasi-rigid
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potential energy of the sytem

location of the differential mass element of the rotor with
respect to the reference frame B along the b, axis

velocity of the i th particle with respect to the inertial
reference frame N

velocity of the differential mass element with respect to the
inertial reference frame N

velocity of the system center of mass with respect to the
inertial reference frame N
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coordinate axis with respect to the inertial reference frame
N,wherei=x,y,2

location of the differential mass element of the rotor with
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dispacement of the platform particle mass m,’ from the b,’
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acceleration of the platform particle mass m,’ from the b,’
axis and parallel to by’

distance the system center of mass is located along the b3
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small perturbation value

time rate of change of perturbation
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mutation angle
time rate of change of nutation angle

rotor nutation frequency

platform nutation frequency

quantity defined in Equation (138)

quantity defined in Equation (138)

quantity defined in Equation (138)

relative rotation rate of the rotor with respect to the platform
time rate of change of the relative rotation rate of the rotor
with respect to the platform

angular position of the platform with respect to the rotor, is
equal to - o¢

angular velocity vector of body and reference frame B with
respect to inertial reference frame N

initial angular velocity value along the b3 th coordinate axis
before the perturbation

time rate of change of initial angular velocity value along the
b; th coordinate axis

angular velocity of body B along the b; th coordinate axis
time rate of change of the angular velocity of body B along
the b; th coordinate axis

second derivative with respect to time of the angular velocity
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spin angular velocity of body B, spin angular velocity of
rotor of the dual-spin system

time rate of change of spin angular velocity of body B, time
rate of change of spin angular velocity of rotor of the dual-
spin system

spin angular velocity of platform of the dual-spin system
time rate of change of spin angular velocity of platform of
the dual-spin system

* ransverse angular velocity vector

transverse angular velocity vector magnitude
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L. INTRODUCTION
A chronological review of early spacecraft types, and the stability criteria developed
for them, provides a sufficient background for the fundamental concepts of this thesis. The
revised energy-sink stability criterion is then presented, and an equation for nutation angle
as a function of energy dissipation over time is developed.

A. SINGLE SPIN SATELLITES
1. Equations of Motion
The carliest satellites took advantage of the fact that stability could be achieved via
the ‘gyroscopic stiffness’ of a spinning body. A pmlnmnary dynamic model for the
satellite could be achieved with Euler’s equations of motion for a rigid body. Eu’
moment equation can be written as
M= "%ltl-'%-f"&')'xh (1)
In component form this becomes

My =h+orh3-ashy

My = hp+oyh-o by )

My =h+orhp-oh
Simplification of the model is accomplished by assuming that it is axisymmetric, that the
body-fixed axes coincide with the principal axes (correct for simple spacecraft with
I = I), and that the body is in a torque-free environment (a valid approximation used
throughout this thesis). The spacecraft is then represented by Figure (1) and the equations




of motion are

O=ham+(s-h)amas
0 =lay+()-h)as o 3)
0=hon

Figure (1)

The angular velocity vector, angular momentum vector, and the kinetic energy may be
expressed respectively as

N3

® = bij+arb+a;bd; @)
h=loyby+haoby+honbs &)
E‘%(’nwxz*"zﬂzzﬂawsz) ©

A simplification of the notation can be made. Let/y = Iy =1/; and I3 = I; . From the third
line of Equation (3) it can be scen that the angular velocity about the spin axis bj is
constant, therefore @3 = @, . The transverse angular velocity components interchange
between the b; and the bz axes but the magnitude is constant, so one can let

2




& = @) b; + 93 b;. Therefore,

N. -
5. = O+ @, bs )]
h=/+],0,b3 ®
A2 = 1'2 0'2 +I2 o} t))

E = %(" m,z + Ig 0,2) (lo)

Because the motion is torque-free, | is constant and h is fixed in space. Because there are
no energy sources or sinks, E is also constant. Finally, the above conditions result in
riﬂbeingaconm

An expression for the nutation angle may now be developed. The orientation of
the body axes with re:  t to an inertial reference frame is desired to provide a measure of
the body's dynamic behavior. Because the angular momentum vector is fixed in space, the
nutation angle is defined as the angle between the body-fixed axis about which spin is
desired and the angular momentum vector, and can be expressed in one of the following

forms

- oni(ig] - corff) - i) n i) o

o B e ) i) oo
In these equations the first and second terms correspond to the general case with spin about
the bj axis, and the third term uses the simplified notation to describe an axisymmetric
body. In the special case of spin about only one principal axis of an axisymmetric body,
the angular momentum vector and the angular velocity vector will lie on the spin axis. With
spin components on two or more principal axes, the three vectors will not be coincident,
although they still will lie on the same plane.




2. Single Spin Satellite Stabiiity
A torque-free, axisymmetric rigid body with the body axes coinciding with the

principle moments of inertia will be stable about the axis of either the maximum moment of
inertia or the minimum moment of inertia. To prove this, one begins with an arbitrary rigid
body. The body is given the initial condition of steady angular velocity, ax. about a
principal axis, and is then perturbed slightly. It is assumed that the angular velocities about
the other axes are small, and are approximately the same order of magnitude as the
pemn-buion(an-mg-el The system will be considered stable if the perturbation does
not increase over time. Given an initial angular velocity with a perturbation,
Nc'n’)' = @) b; + @2 by +(wp + €) b3, and given arbitrary inertias /), I3, I3, Euler's
equations of motion can be written as

0 = /yan +(l3-h)en(an +¢)

0 = han+(Ih-I) o (@ +é) (14)

0=hay+({-h)o 0
The equations are linearized by neglecting terms of magnitude £2. Rewriting the equations
by eliminating the terms € @y, € @2, and @) @ results in

ay = 1’—’,;"22@;@0 (15)

o = (1—31-?&01 @ (16)

03 = p+E=E=0 an
From Equation (17), one can conclude that £= constant. By differentiating Equation (15),
and using Equation (16) to eliminate @, one gets

i +((”;'}2‘,”’mw§)wx =0 (18)
1712

Similarly, from differentiating Equation (16), and using Equation (15) to eliminate @, one




= [(-h)-h z) -
b ) -

These equations are identified as second order, linear, ordinary differential equations with
constant coefficients. The general solution for these differential equations are

o = K;eirt+Kpe-irt 0)
oy = Kyeirt+ Kye-irt 21
where
= af/a=h)h-1) 2
y= o 22l o @)

If 9 is imaginary, o» and @, will increase without bound over time, and the motion will be
unstable. Stability is achieved if y is real. The first case occurs when the maximum
moment of inertia is about the spin (b3) axis; then /3 > I1 , Is > I, and (I3 - 1) (I3 - I} > 0.
In this case the inertia ratio I, / /;, defined as the inertia about the spin axis over the inertia
about a transverse axis, is greater than one. The second case occurs when the minimum
moment of inertia is about the spin (b3) axis; then/3 < /) , I3 <, and (I3 - K)(I3-1,)>0
as well. Here the inertia ratio is less than one. In both of the above cases ¥ is real and the
motion is stable. However, if /3 is the intermediate moment of inertia about the spin (b3)
axis, then (I3 — I2) (I3 - I) < 0, } is imaginary, and the motion is unstable.

The previous model cannot be applied to 2 satellite since the assumption of a rigid
body cannot be extended to the spacecraft. Structural elasticity, liquid propellant slosh,
etc., cause energy dissipation in an actual spacecraft. This spacecraft can be generalized by
a quasi-rigid body with an unspecified energy damper mechanism. A priori, one can
conclude that energy in the above system will dissipate until the minimum energy state is
reached. The kinetic energy of the system with spin about the principal axis with maximum

moment of inertia and spin about the principal axis with minimum moment of inertia can be

5




written respectively as

e (23)

E '%ih.;.' Jin about by
The angular momentum is constant in the torque-free case. Thus the minimum kinetic
energy state occurs when the rotation is about the axis of the maximum moment of inertia.
Therefore, a quasi-rigid body is stable only when it is spinning about its major axis, with a
corresponding inertia ratio that is greater than one.

A relationship can be established between the time rate of change of the nutation
angle and the energy dissipation of a quasi-rigid, axisymmetric body. One must assume
that the angular momentum and moments of inertia of the quasi-rigid body do not change
appreciably from a comparable rigid body. For the generalized model, with arbitrary
inertias /; = I, and /3, Equations (5) and (6) are substituted into Equation (12) to obtain

(, )(213 E-h?) 24

The time rate of change of the nutation angle is determined by taking the derivative of the
above equation
é - 1 2[113 (25)

where the only rate of change of energy £ is attributed to the damping mechanism and is
written as Ep ;a1 t0 emphasize this point. Because Ep jq is negative, the nutation angle
will decrease only if I3 is greater than /;. This reaffirms the previous conclusion that a
quasi-rigid body is spin stabilized only about the axis of maximum moment of inertia. The
foregoing development is referred 10 as the energy-sink method.




B. DUAL SPIN SATELLITES
The logical progression from the single spin satellite was to incorporate a de-spun
platform. This permitted the replacement of the low gain omnidirectional antenna with

directional antennas for communication satellites, and a more capable spacecraft for
scientific observation. A simple control system about the b3 axis would maintain the
platform rotating at a constant relative rate with respect to the rotor ( and would usually
have the platform rotate at the earth’s rotational rate). Initially, the platforms were
sufficiently small, and the overall dimensions of the satellite were such that the inertia ratio
woulau be greater than one. For this type of satellite, the previously developed theory
proved adequate. However, as satellites continued to grow in size, the launch vehicle
shroud diameter became a constraint. In order to provide the size spacecraft needed to
satisfy mission requirements and still fit within the shroud, a spacecraft with an inertia ratio
of less than one (/s soar/ It tota1 < 1) would need to be built. From the previously
developed theory, a spacecraft with an inertia ratio of less than one was believed to be
inherently unstable. It was not until the development of the energy-sink theory for dual-
spin, quasi-rigid, axisymmetric spacecraft containing a driven rotor, developed
simultaneously by V. D. Landon (unpublished work) and A. J. lorillo [Ref. 1], that a
spacecraft with an inertia ratio less than one was considered feasible. Several rigorous
stability analyses using the equations of motion for specific dual spinners have been
performed by P. W. Likins [Ref. 2], D. L. Mingori [Ref. 3]}, and others, to validate the
energy-sink theory. The difficulty of a rigorous analysis is in accurately modeling all the
forms of energy dissipation. A more general and practical approach was required to
determine stability, and the energy-sink theory proved suitable. The development of this
theory is as follows.




‘The spacecraft, shown in Figure (2), is assumed to fulfill the following conditions:

* Both the rotor and the platform are axisymmetric
* Both the rotor and the platform are quasi-rigid

* The dampin, mecbmismsdonotsigxﬁun’ tly alter the energy value, althou
dlemechmfsmwillcmnib\mw energyyme &

* No external torques are applied
* The only relative motion is spin about the b3 axis
* The motor, driven by the control system, inputs just enough energy to exactly

offset the shaft frictional losses, maintaining a constant relative angular
velocity between the rotor and the platform

b3, b's, b’y 0 b

1]
1
1

M

Dual-Spin Quasi-Rigid Axisymmetric Spacecraft
Figure (2)




‘The magnitude of the angular momentum and the kinetic energy of the dual-spin system can
be expressed respectively by the following equations

B o= IR0+ (o, +1 @) = IR 02+l 0+ 1, iia 05 (26)
E= % I; 10eat®2 +%- I,o2 -o% L'o/= % It seal @2 +%- I, a0 4% Lo +L,w'/o (27)

where 0 is the relative rotation rate of the rotor with respect to the platform. Although the
equations actually represent a rigid body system, they are also applicable to the quasi-rigid
system because of the above assumptions. If the damping mechanisms do make significant
contributions to the energy of the system, then Equations (26) and (27) do not hold, and
the energy-sink criterion will not apply. Additionally, the potential energy of the system
(for example the energy stored in the spring of a mass-spring-dashpot damper) will not
make a significant contribution to the total energy of the system. Therefore, for the
remainder of the thesis, it is assumed that the kinetic energy of the system is effectively the
total energy of the system (E = Ejc). Because the system experiences no external torques,
angular momentum is conserved. Because the motor contributes no energy to the system,
the time rate of change of the kinetic energy £ is represented by only the quasi-rigid energy
dissipation Ep g, and is negative. anfu'ennanng the above two equations with respect to
time, one obtains

0 = 12, 0+l 0, +1; @)1, 05+ 15 &) 28)

E = Ep ol = Itioa Oy 00 +1; 0, 0 + IS 0 0 (29)

Eliminating the common term @; @, by combining the above equations

£ = by gm0t 0\l 0+ 1) 6

+Lo,0.+1 o o (30)
I total

One may now define the inertial nutation frequency, Ao, the rotor nutation frequency,




A, and the platform nutation frequency, 4’, as follows

Lo,+1 of

Ao = 7 31)
¢ total
A= do-o, = ol Bt 0, 32)
A =A-0, = llms"'(ll'-l“ﬂll)m; (33)
i It socal

The nutation angle for a dual-spin system is defined as

0 = cos-! (h Hb3) = cos-! (h3 ;th') = cos-] (Is @y L’:' ws') (34)

By imposing the condition

2>0 (35)

the analysis of nutational motion is restricted to the following region without any loss of

generality

ososlzl (36)
Incorporating the nutation frequency terms, the equation for energy dissipation is written as
E=Epia = Ep+Ep = -LAas-I A" & 37

Recalling the assumption that the rotor and platform are uncoupled about the b3 axis, we
may incorporate Equation (37) into the reaction torques which tend to change the angular

I; d’: = —‘—D
(38)

Is' d),' = "E’%
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Combiniag Equation (30), (37), and (38), one asrives at the transverse rate equation

. Ep Ep’
1 total 0 O = Ag T )

Differentiating Equation (12) and substituting Equation (39) into it, the time rate of change
of nutation angle as a function of energy dissipation rates is
é = 20 X 52...5_‘". (40)
sin(26)A2\1 A
The energy-sink equation for a single spin-stabilized body is obtained by letting 4 and A’
become Ao and Ep + Ep’ become Ep sua for a single body. The definition of stability
xequiresd:enutationangleOtoremainconstantordea'easeasafuncﬁonoftim,sothaté
is zero or negative. Because the factors outside the parenthesis on the right hand side of
Equation (40) are positive, the stability criterion for a dual-spin, quasi-rigid, axisymmetric
system becomes

.E_Q+£D.:so

A X

41)

One of the following cases will guarantee stability

1) A>0 and 3'>0

2) A>0,A4'<0, and E—D-<@
A A
3) A<0,A4’>0, and E"’—>-£-.-D-
A A

A specific example would be the model of a typical communications satellite, a prolate
dual-spinner possessing an inertia ratio of less than one. In general, the rotor nutation

11




frequency, expressed as

2= l,w,+l,’¢»,’_w' o Us— 1 al) @5 + 15 @5

It sotal It soeal

would be negative because (I; — /; 1oq2) is Degative and @, >> @5’ if @, is rotating at the
earth's rotation rate. Thus, energy damping in the rotor, £p, would be destabilizing while
energy damping in the platform, £p’, would be stabilizing. It is from this result that
satellites will have a damping mechanism placed on the platform to improve nutational
stability. Such a damper is called a nutation damper.

“@2)
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IL PROBLEM DEFINITION

A. OVERVIEW

The existing energy-sink theory relies on several assumptions, perhaps the most
important relating to the driven rotor. As previously stated, it has been assumed that the
motor, driven by the control system, inputs just enough energy to exactly offset the shaft
frictional losses, maintaining a constant relative angular velocity between the rotor and the
platform. In actual systems, contrary to this assumption, the motor may add or remove
energy from the system, depending on the dynamics of the spacecraft. Consequently, a
revised energy sink stability theory, properiy accounting for the energy contribution of the
motor, is derived. The revised theory, based on the concept of core energy, will remain
consistent with the existing energy-sink stability criterion. Continuing, an equation for
nutation angle over time, as a function of core energy, is developed. Given a postulated
energy dissipation function modeling the nutation dampers, structural elasticity, fuel slosh,
etc., one can accurately predict the nutation angle behavior. Numerical simulation of D. L.
Mingori's dual-spin, quasi-rigid, axisymmetric system containing a driven rotor [Ref. 3] is
used to validate the revised energy-sink stability theory. The predicted nutation angle,
based on this revised energy-sink theory, and the postulated energy dissipation function, is
compared to the exact nutation angle of the Mingori system. By using a suitable postulated
energy dissipation function, one can achieve excellent agreement between the predicted and
the exact nutation angle. 1. Michael Ross [Ref. 4] performed this analysis on a dual spin
system with a damper on the platform only. The remainder of this thesis will use the same
analysis, but on the Mingori system with dampers on both the rotor and the platform.

13




B. INCONSISTENCY OF THE ENERGY SINK THEORY

There exists a contradiction between the existing energy-sink theory and the nutation
angle derived from it. This will provide the motivation for developing a revised energy-
sink theory and an alternative equation for nutation angle over time. From before, the
existing energy-sink stability criterion can be expressed as

b5, “
A A

and the nutation angle for the dual-spin system was defined as

o) o) i) o

As previously stated, for a prolate dual-spinner (/s (ar / I; inal < 1), energy dissipation in

the platform is stabilizing and energy dissipation in the rotor is destabilizing. The angular
velocity of the platform about the spin axis, @', can be expressed in terms of the angular
momentum and the kinetic energy of the system. Combining Equation (26) and Equation

(27), one arrives at

y_ Ia ,\/ 1,02 h2 =21 et E+15 62 (I; soeat = 1)
o = -—2Y% 4+ F - 42
g Is 1otal s total! I souat(lt sotal = Is 1otal) “2)

Substituting this expression into Equation (34) results in

0 = cos!(:vQ) “3)
where 0 is represented as
5= RE-L s+ LS Ly iy (44)
hz(l_l IIM'-I‘M
1 toal

Initial conditions at 7 = () will determine the correct sign, with continuity considerations

maintaining the sign for all of > (). Additionally, no external torques are applied to this

14




system, resukting in i being constant. Differentiation of Equation (43) results in

: (= £ sotat) Is sotat

6= -1—_(:76)—5;(1«/6) - t;:-;ng @5)
From the definition of nutation angle, Equation (34), and the condition imposed on it,
Equation (36), the positive sign must be chosen in Equations (43) and (45). An important
observation is made at this time. Choosing the positive sign will result in a positive rate of
change in the nutation angle, indicating an unstable condition. The relative rotor spin rate is
an independent variable, and is arbitrarily selected here as a constant value over time.
Therefore, energy dissipation in a prolate dual-spin spacecraft will make the nutation angle
increase, regardless of whether the dissipation is in the platform or in the rotor. This is not
consistent with the stability criterion of Equation (41). Thus, the existing energy-sink
stability criterion contradicts itself.

C. CORE ENERGY AND ENERGY DISSIPATION

The existing energy-sink stability criterion does not properly account for any energy
that may be provided by, or absorbed by, the motor. To accurately represent the system,
the total rate of change of energy must be written as

E = Epeg+W (46)
where W is the rate of work due to the motor, and may be either positive or negative and
the rate of change of energy due to dissipative elements can occur in either the platform or
the rotor. Recall that the kinetic energy of the dual-spin system was expressed in Equation
(27). Xf the work due to the motor torque as a function of time is written in analytical form,
then the time rate of change of the energy of the system due to all dissipative elements,
ED toial, can then be expressed solely in terms of the quasi-rigid parameters of the dual-spin
system. With this expression, the condition that Ep soa < 0 will result in the required
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stability criterion. The difficulty arises in that to get the work due to the motor torque W
(or W), one needs to know the exact dynamics of the dissipative mechanism. In the
development of the modified energy-sink stability, Equation (46) will be used to determine
the expression for Ep ;e and ultimately derive the revised stability criterion and nutation
angle equation.

Additionally, the existing energy-sink theory can be shown to be incorrect for both
the case of total energy decreasing and for the case of total energy increasing. For
example, if the rotor is rigid and total energy decreases, Equation (41) predicts that the
system will be stable, but Equation (45) predicts that it will be unstable. Allowing the total
energy to increase would reverse the conditions, but still show a contradiction between
Equation (41) and Equation (45).

A modification of the energy-sink stability theory and the associated expression for
nutation angle is now presented. The development of the theory is from I. Michael Ross'
unpublished notes. The basis of the new theory is centered on the core energy of the
system. As defined by Hubert [Ref. 5]

Core energy is the total energy of the spacecraft minus the portion of the rotor
energy that is due to the relative rotation between the rotor and the platform. It
is assumed that the mass, inertia, and motion of the damping device are
sufficiently small that its energy is negligible relative to the spacecraft core
energy. The damper will be treated as an undefined ‘energy sink' for the
purposes of the energy sink analysis.

From the above statement one can define the core body as that body whose inertial
dynamics are selected for analysis. Hubert defines the platform as the core body. The core
energy is simply the rotational kinetic energy of a fictitious rigid body that possesses the
inertia properties of the entire dual-spinner but moves in inertial space exactly like the core
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body. For a dual-spin spacecraft the platform core energy is defined as

2

Ec' = %lxuwxz'*%lzww-f*-%lsuﬂs'z = %l,m,m,%%l,m,w, 47

The center expression is for an arbitrary dual-spin spacecraft with the spin axis about the b3
axis, and the right expression is for a dual-spin, axisymmetric spacecraft with the
simplified notation. Extending this concept to the rotor, the rotor core energy is defined as

Ec = %l;uw3+%lzww}+%lgwm;2 = %Iuaala’:z""lesmdwsz (48)

Necessary to the development of the modified theory is what will be termed the
Separation Axiom. This is when analysis is first performed with the rotor considered rigid
and the platform quasi-rigid. Euler's equations are written for the rotor, and through
manipulation, an equation is derived relating the torque on the quasi-rigid platform solely in
terms of platform variables. Then the platform is considered rigid and the rotor quasi-rigid.
An equation is derived relating the torque on the quasi-rigid rotor solely in terms of rotor
variables. These two separate equations are then combined and applied to a system in
which the rotor and the platform may both be quasi-rigid.

The case of a rigid rotor with a quasi-rigid platform is first analyzed. Because the
rotor is rigid, the torque applied by the motor to the rotor is the net torque on the rotor and
is determined from Euler's moment equations. For the case of the axisymmetric rotor,

Tp = T = I 0 49)

One can observe that Tpps =—Tgry , but Tp# Ty since the damping mechanism

contributes additional torques to the quasi-rigid platform. The rate of work needed by the
motor torque to maintain constant relative motion between the rotor and the platform is

W=Tro=I00 =1,0(a +6) (50)

By substituting the platform core energy, Equation (47), into the kinetic energy expression,
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Equation (27), kinetic energy may be expressed as
E-Ec'-o-%l,ozi-l,a),'o (51)
The above equation is differentiated to arrive at the time rate of change of the kinetic energy
of the dual-spin system
E=E’+Il,00+I, (00 +a’ 0) = Ec’+1,0(ld +0)+1, 06 (52)
Substituting into this equation the rate of work done by the motor torque, Equation (50),
one gets
E=E’'+W+L, 00 (53)
Comparing this to Equation (46), it can be seen that
Epwa=Ec’ +1; 04 0 (54)
Taking the derivative of Equation (47) to get the time rate of change of the platform core
energy
Ec’ = It oua1 O O + Iy 10t @5 O (55)
and then substituting this into Equation (54), one arrives at the total energy dissipation of a
rigid rotor, quasi-rigid platform system

Ep tovat = It toval O @ + Iy soua1 @O5° 0" + 15 00" G

: . y , . (56)
=hathoy+i;0] o +1 o' o +1;0/0

Because the system has no external forces applied, it remains torque-free. Thus, Equation
(28) can be used to eliminate the ax ax term and arrive at

(U sotat = Iy total) @ =1 ) 57
It toal J

EDW‘(’:“’:"”:"‘.’:')
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Noting that the platform nutational frequency, Equation (33), can be written as

2.':Ao—o)"all’m‘+l"m”\_w“.(’l“l'llldd)ws""’sc (S8)
\ lllall ’ llld‘l
then Equation (57) can be written as
Ep 1at = (l,d),d-l,’ 0.’:')(‘ A) = 3:01:(-1') (59)

Referring w0 Equation (34), the nutation angle can be written as

cos @ =

La,+1/ w,') 60
(“—"‘H 0

Taking the derivative and comparing it to the rate of total energy dissipation, Equation (59),

the following relationship can be established

_ési,,h('_s_;‘ﬁ_’.s&),' - Ep it )
] Ap

Because the rotor is rigid, all energy dissipation will occur in the platform, such that
%- i) Osin 6 62)

Equations (61) and (62) can be rewritten by including the motor torque, Equation (49), as

—Nésin0= T+ 1y o =_—ff’- (63)

Because Tp = — Ty (action - reaction pair), the final relationship is written as

E 1 AP
Tem = ;'f-'* Is o (64)

This equation describes the motor torque on the quasi-rigid platform as a function of
platform variables only. It can be seen at this point that the classical analysis can be
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achieved by assuming no torque is applied by the motor, resulting in Tp/ = 0 and
=2 =-I o (65)

This analysis can now be performed on the system containing a quasi-rigid rotor and
arigid platform. It is observed that the selection of the body to be the rotor and the body to
be the platform is completely arbitrary, and no physical distinction exists between the two
bodies. Therefore, by analogy, the equation describing the torque on the quasi-rigid rotor
as a function of rotor variables must be

Tam = %’} +1, o (66)

Now let Tp;y and T gy represent the motor torques on the platform and on the rotor
respectively for the system containing both a quasi-rigid rotor and a quasi-rigid platform.
Then the separation axiom would require the following two conditions

. Ey ...,

Topg = Tom = -f,-*'ls O (67)
. Ep .

Tay = TR = -;4- Iy o (68)

Once again, since the system is an action - reaction pair

T;IM+ T;,“ =0 (69)
and then
B B (1, i1 @) = W 6sin 0 (70)
A A
20




The seability criterion dictates that @ remain zero or be negative, thus

B E ¢ )

—_

A X

This is seen to be the existing energy sink criterion. Therefore, despite the presence of
motor torque, the existing stability criterion still applies. Referring to Equations (67) and
(68), the second term in the equations would represent the torque applied by the damping
mechanism to the platform and the rotor respectively. Equations (67) and (68) state that the
motor torque minus the damper torque will equal the net torque of the platform and the
Totor respectively.

In determining the revised energy-sink stability theory, the energy dissipation
equation for the system with no energy contribution from the motor, Equation (37), must

be rewritten to account for the motor torque. Thus
E = EDM+W = —lga_‘-o.,:—l"l' d),' (71)

Substituting in Equations (67) and (68), one arrives at

E=EpuatW = 1(%2-7;/u)+1'(%-7;/u)

. . N (72)
= Ep+Ep'~(A Tape + 4 Thpy)
By assigning the motor torque values as
T = Tope = - Tome (73)
then the above equation can be rewritten as
E - Epw-l'w‘l ED+ED'+T‘{(A'—A) (74)

Because the total time rate of change of energy dissipation equals the rate of change of
energy dissipation in the rotor plus that in the platform, the rate of work due to the motor
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torque must be
W= Tult-2)=Tno (75)

Referring to the example from Chaprer 1, the prolate dual-spin communications
satellite, typically the rotor nutation frequency would be negative and the platform nutation
frequency would be positive. For rotor spin-up Ty¢ > 0 and the motor torque would add
energy to the system, and for rotor spin-down T < 0 and the motor torque would remove
energy from the system. For the arbitrary system, the motor torque, Ty, and the sign of
the term A’ - A (= 0), would determine whether the motor adds or removes energy from
the system.

The rates of change of the energies of the system may now be represented. Rewriting
Equation (46) to determine the total energy dissipation of the system

Epw=E—W (76)

The rate of work due to the motor torque can be expressed by combining Equations (75)
and (68) (or Equation (67) ) to arrive at

>

W= §20+1,¢b,o (-—--E-Q-a-l,’d),’ a) an
A A
The rate of change of the kinetic energy of the system as a function of platform core energy
and system parameters was determined previously as
E=El+Lola, +6)+ 1,0, 6 (52)
Substituting the above two equations into Equation (76), the expression for total energy

dissipation of the system may now be written as

EDM = EC'+I’ 0(6),"0'6)4‘1,0)3' 6“'%0“136’30 (78)




Because @)’ + G'= a), this equation can be further simplified
ED wcat = &'«rl,w.’&-%a 9

Comparing this equation, representing the system with a quasi-rigid rotor and a quasi-rigid
platform, with Equation (54), representing the system with a rigid rotor and a quasi-rigid
phtfam.mulsanaddiﬁomlm—gf-o. The first term of Equation (79) represents the
rate of change of core energy, with the platform as the core body. The second term will
account for the change in energy associated with a change in the relative rotation rate of the
rotor with respect to the platform. The final term accounts for the energy loss due to the
quasi-rigidity of the rotor that is not represented in the platform core body expression.
The case that will be analyzed is that which occurs when there is a constant relative
rotation rate between the platform and the rotor. For the remainder of the analysis, let
=0 (80)
and the total rate of energy dissipation becomes

Ep ionat = Ec'-g‘i-‘-’- @1)

Further simplification can be achieved by noting that 0 = 4’—~ 4 and from Equation (37)
that Ep iea; = Ep + Ep’. Therefore

Ep+Ep = sc'-s,,("'; ‘) 82)
which reduces to
ED.+E = _E.g: (83)
PP

A similar development can be performed using rotor core energy vice platform core energy.
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The result is

A A A

There is an expected symmetry between Equations (83) and (84), due to the arbitrary
assignment of one body of the system as the rotor, and the other body as the platform. To
confirm the results of Equations (83) and (84), one must prove that when 0 is constant

Ec Ec (85)
A X

Taking the derivative of the rotor core energy, Equation (48)

Ec = Itmlw:dh"":mdw:d’:

(86)
= Iy soeat @ O + Iy sonat (@5 + 0) (@0 + 6)
and similarly, for the platform core energy
Ec' = I unat O O + Iy soeal ©5 O (87)
Substituting Equation (87) into Equation (86) and noting that 6= 0,
Ec = E¢’ + I 4001 O 05 (88)
Multiplying through by the platform nutation frequency
EcX = Ec’ X + s ma A OO (89)
and recalling that 3’ = 1 + o,
EcX = Ec’A +Ec’ O+ Ly uma X OO (90)
which is the same expression as Equation (85) if it can be proven that
Ec' + ;A @5 = 0 1)

Eliminating the transverse angular velocity of Equation (47) by substituting in Equation




(26), one arrives at

2_ ’ »
&I = %(k (I’ :ﬂ‘ m‘ P)+%'J“’ w"z (92)
Taking the derivative
Ec = _(ls o, + 1 0’:)(’: s+ m')‘l-lgwm,' @,’!LM ©3)
I; totat I cual

E'= _(’sz s 0, + 11 o oy + 1,1 o, 6, ’:'2 @, d’s') + I sotat I 1oual ©5 @ ©94)
Iy iual

Noting that I; et = I, + I’ and recalling that a) = @, because & = 0, the above
equation can be reduced to

(I‘ @ + l;' a,"‘- I‘ tosal a’;’ ) d),

Ec’ = 5l 7 95)
t sotal
finally, invoking the definition of the platform nutation frequency, one arrives at
EC' = = Iy ioat A d’: (96)
Therefore, Equation (91) holds and the revised stability criterion can be expressed as
E = EC_ = -E—D--fE-D— <0 (97)
A A A X

A few remarks can be made concerning this stability criterion. The third expression is the
existing energy sink stability criterion. This criterion must equal the stability criterion as a
function of the rotor core energy which must equal the stability criterion as a function of the
platform core energy. It can be seen that one no longer needs to know the energy
dissipation rates in the platform and in the rotor to determine stability. By knowing or
postulating the core energy over time, the stability of the system can be determined.
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Continuing with the prolate dual-spinner example of Chapter 1, any one of the above
expressions apply. For a stable system, the rotor core energy will be positive, and increase
over time. Additionally, the rotor nutation frequency will be negative, resulting in a
negative expression for the rotor core energy stability criterion. The platform core energy
will be positive, but will decrease over time. The platform nutation frequency will be
positive, resulting in a negative expression for the platform stability criterion. According to
Equation (97), the platform and rotor stability criteria must equal one another. From the
numerical simulation of a dual-spin quasi-rigid axisymmetric system, the rotor and platform
core energies as a function of time will be determined and graphed.

D. NUTATIONAL MOTION

The development of a modified expression for the nutation angle as a function of time
may now be presented. The actual nutation angle of the system is defined as 6. The
nutation angle as a function of platform core energy will be represented by 17, and the
nutation angle as a function of rotor core energy will be represented by 7. The derivation is
similar to the one previpusly given in this chapter, except that the total energy of the system
has been replaced by the core energy of the system to eliminate the transverse angular
velocity,a. The derivation for the platform core energy will be shown. From before, the
angular momentum of the dual-spin, quasi-rigid, axisymmetric system is

B = 1202 + (o, + 1 o/ = BRogo?+(l, 6+ Lwaos  (26)

Combining this with the platform core energy, and solving for the platform angular velocity
about the spin axis

I, socait Us wotat = It total) @3 =2 Iy sovat Iy 6 03" + 12 62 + 2 Ec’ Iy et = h? = 0 (98)
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. Lo Doga ) 1
O = e e - lmu)tr t sosal = I soat] I sosal 9

where

Q = 2&1,,,..,(1- 1202 (100)

A Icmd)(l Iuad) (lcmd
The initial conditions at ¢ = 0 will determine the proper sign of Equation (99). As before,
continuity will ensure this sign for all #> (). Substituting Equation (99) into Equation (11)

,,.m-,lz,wa;, +1,o\ m-,([‘ ,..fffz“f }%[,,“-/5']) a01)

The time rate of change of the nutation angle will determine the stability. Differentiating the

above equation results in
., —Ec" 1 (1
—— 102
it mnh(t—lm,_c, (102)
A stable system would require that the lower sign be chosen for the radical, thus
= -1 £ total -
1 = cort sl | oV a0

Whentlﬁssimselecﬁonisappliedtoﬁquaﬁon(52).onegas

0" (1 st Iy s + 1 0 = -~ ({1 (104)
This can be rewritten as the well established dual-spin stability condition, as written by P.
C. Hughes [Ref 6],

Ut soat = Is tna) 03’ + 156 S O (105)
It is important to note that this analysis does not produce a contradiction to Equation (41).




In a similar manner, the modified nutation angle can be derived with respect 1o the rotor as

n = cor [l |1 170-10]) 109
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Therefore, if one is given the core energy or the postulated core energy as a function of
time, the nutational motion can then be determined. This leads to an extremely important
conclusion. By determining a sufficiently accurate postulation of the core energy of a dual-
spin, quasi-rigid, axisymmetric spacecraft over time, one can predict the nutational
behavior and the stability of that spacecraft. Numerical simulation of such a system will
confirm this conclusion.




L DYNAMICAL EQUATIONS

A. MINGORI DUAL-SPIN SYSTEM

A specific model is required to validate the modified energy-sink stability theory. The
development of the previous chapters was compietely general in nature and applies to any
dual-spin spacecraft with an arbitrary damping mechanism. D. L. Mingori's dual-spin
system [Ref. 3] provided the needed model required to validate the proposed stability
theory, Figure (3). Additionally, the complete non-linear equations of motion were
presented by Mingori; however, the expressions for the important parameters in attitude
dynamics, angular momentum and kinetic and total energy, were not presented in his paper
and had 0 be derived before any analysis could be performed.

The Mingori system is comprised of two symmetric rigid bodies, the lower which
shall be defined as the rotor, and the upper body shall be defined as the platform. By
convention, all terms referring to the platform will be the same notation as that of the rotor,
except that they will carry the prime mark. Both the rotor and the platform have coordinate
axes fixed to the body and located at the respective centers of mass. The distance between
the centers of mass is specified by L. The entire spacecraft has coordinate axes fixed to
the spacecraft center of mass, denoted by the double prime coordinate axes, and rotating in
the same manner as the rotor coordinate axes. The coordinate axes bi, bs’, and b;”are all
collinear. The spacecraft center of mass will vary along the b3 axis as the point masses in
the rotor and the platform oscillate. The only relative motion of the platform with respect to
the rotor is angular rotation about the b3 axis. A motor driven by a control system
maintains a constant relative rotation rate 6. The angle between a line parallel to b; and
passing through the platform center of mass, and b1 is represented by v = o't .
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Mingori Dual-Spin Quasi-Rigid Axisymmetric System
Figure (3)




mwm-wmwwum An actual spacecraft
undergoes damping from various mechanisms. Undesired damping can occur due to
structural elasticity and liquid propellant slosh. Nutation dampers are incorporated into
spacecraft to improve the nutational motion. The dual-spin axisymmetric system with
mass-spring-dashpot dampers cannot accurately model an actual spacecraft, but is used to
illustrate and validate the theory. A description of the rotor is as follows. The mass-
spring-dashpot mechanism can be modelled by a particle mass m; amchedtoaspringwith
constant k inside a tube filled with viscous fluid with damping coefficient c. The motion
of the particle is constrained parallel to the b3 axis only. At rest, the particle mass lies
along the rotor's b coordinate axis, at a distance g from the rotor's center of mass. Three
balancing masses, m2, m3, and my, cach equal to the mass of the mass-spring-dashpot
mechanism, are rigidly fixed a distance g on the by, —b;, and —b; axes. These masses
maintain the axisymmetry of the system about the by axis. Displacement of the particle
mass m is denoted by the variable z. A simplification in this paper of the Mingori dual-
spinner system is the assumption of a massless spring-dashpot system. Thus the particle
of the mass-spring-dashpot system, m,, is the same mass as the corresponding three other
balancing masses, m3, m3, and my. The platform can be described in a similar manner,
with all notation modified with the prime mark.

The dual-spin system center of mass coordinate axes rotates at the same rate as the
rotor coordinate axes, but is located along the b3 axis at a distance z.,, from the rotor center
of mass. This distance will vary as the particle masses are displaced. Relating the dual-
spin system's coordinate axes to the rotor coordinate axes was arbitrary. Equivalent results
would be achieved by selecting the platform coordinate axes instead.
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B. ANGULAR MOMENTUM

The angular momentum of the Mingori dual-spin, quasi-rigid, axisymmetric system is
now derived from first principles.

The angular momentum (moment of momentum) of a particle of mass m; located in
body B is defined as

Ri=r;xm; NV‘ (108)

where b; is the angular momentum of the i th particle with respect to the system center of
mass, r; specifies the location of the i th particle with respect to the system center of mass,
and"ir“-:—“iiL is the absolute velocity of the i th particle with respect to the inertial
reference frame N. Expressing the absolute velocity in the system reference frame

NV‘ = NV“ + P+ NE’ Xr; (109)

where B represents the reference coordinate axes of the system. For the following
derivation, all displacements and velocities are referenced with respect to the rotor (b;)
coordinate axes. The angular momentum vector is rewritten as

hij=rixm; (NV“' + 5+ N(T)’ x ri) (110)

Applying this equation to particle 1 with mass m,; and position
ri=ab;+0by+(z2-2m)b3 (111)
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(112)
(- (z- zemf 0 —a(z-zm) || O \
0 a2 + (2« Zemf 0 o |+
| ~a(z- zem) 0 a o, %
Ry=m b,
[ 0 —(z - 2cm) 0 Vem s 0
\ (2 - Zem) 0 -a Vemy | +| —a(z—zcw) bs
) a 0 Vem: 0 }
For the rigid body, Equation (110) is applied to a differential volume at location
Paw=Ukby+vby+ (w—2.4)b3 (113)
Integrating, one arrives at
,’11+Mza,. 0 0 o | |
0 Iy +M 22, 0 o [+ b 114
0 0 I oy ! 114
By = b,
0 Mzc,,. 0 chx
Mz O 0 ] Vem y b,
\ 0 0 0 Vem: }
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Similar calculations are performed for the remaining seven point masses and the platform.

For the rotor, one arrives at
hoh'
3 heMze
.20’-»4:.’.4»)
22-222m
0
-maz
0
+ | (Me+am)(zen)
-m2
L

0 -mas .“\
h+Mze
2a’+4:.’.+) Y 02
22-222m
0 Is+ 4 ma® 93
0
+! -maz
0
(M*4 m)(‘ﬂ) 0. ) {V-'
-mz
0 0 V-y
0 0 J V“ﬁ /

|

b
b2
by
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Stenilarly, for the platform

(116)
.U:_A-'. -
L'+ M(l-2a)f+
Jratva(l-zaf+ 0 -m'a’ 2’ cos(01)
- 2427 (- 1m) Y
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P N2 e27(1-20m)
o3
-m a2 cos(o1) -m d’ 'sin(01) I'+ama?
I _
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(ls'+4m'¢’z)d’ \h‘
[ 0 ‘(""_‘ :.')}"“") 0 Vs
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The angular momentum equations have terms corresponding to the velocity of the
center of mass. Angular momentum, when taken about the center of mass of a system, by
definition must be independent of the translation of the system's center of mass (with
respect to an inertial reference frame). To verify that this occurs in the above equations, the
equation for the position of the center of mass is substituted into the center of mass velocity
terms, and then these equations are equated. If they have the same magnitude but opposite
sign, they will cancel each other out and it will be proven that the system angular
momentum is independent of the translation of the system center of mass.
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Looking at the b; components, one finds
[+ 4 M) 14 200) ' 2] 2 (M +-4 ) 2m — m 2] (118)
M+am)l +mzem ri(M+am+ M +am)zm (119)

The center of mass with reference to the by, by, b3 coordinate axes is

2 Mizi+miz Ao e
fom = amz+(M’+4m)I +m'? (120)
zM,--b-m.- M+4m+M +4m’
" .
Substituting Equation (120) into Equation (119) results in
(M’+4m’)l +mzem 2 (M+4m+M’+4m’)(mz+(M+4m)l tmz (121)
M+4m+M +4m’
This reduces to
(M’+4m’)l+mz+m’z’=(M’+4m’)l +mz+m'? (122)

Therefore, the angular momentum along the b, axis is independent of the velocity of the
center of mass. Verifying this along the other axes can be done in a similar manner. This
proves that the angular momentum of the entire system about the system center of mass is
independent of the translation of the system center of mass. The angular momentum of the
entire system can be written as

Bebyaamt Dyryam (123)
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C. ENERGY
The kinetic energy, E, and the total energy, Eixql, are now derived. From first
incivles the kineti of a differential Darticle is written as
Ean = 3| Mg#Bam = L{(Pg*) - (Y5 )) am (126)
where the absolute velocity is defined from before

e ™ 4 b+ '@ X Tam (109)

The kinetic energy of the Mingori system is determined by integrating the differential

kinetic energy over the rotor and over the platform, and summing the differential kinetic
energy equation over the eight point masses to arrive at

j (M%) (%)} am+ 3 L((%) - (%)) ms

l-1

(127)

L[ (=) (=D £ 4 (ww7)- (7))

Performing the steps on particle m,, the following is obtained
(128)

4 {x(-=- Mgy s (Mg xn) - (gmxn))s }

mlu‘zl (N em 1)+2(N cm (N"""‘xl'l))+2(l‘1 Necm x 1) )

Substituting in the values, one arrives at
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(129)
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This operation is then performed over the other three particles in the rotor. Performing
these same steps on the body of the rotor,
(130)

(o= - Mg +e1 - )+ (P xm) . Vgmxr) )+

=1
Eu=3 - 20" 1)+ 2 (7" (amxm) )2 (k) - ) W

Substituting in values, and specifying the position vector of the differential particle as
Fap = U by + v by + (w—2c4) by (131)

(132)

( Vg st Vimy# Vg, 432+ W2 02 -2 w2z 03 + \
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2 O+ UL O -2W Zm O -2UW D) D3 +2 U Zem D D3 +
V2ol -2vu e 02+ u2 0F +2(-2cm Vom ) +
2(W°)2Vanx-zcmw2 Vemz=V @3 Vemz—w o, Vany+)+

anm——
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Integrating over the limits of the symmetrical body, the kinetic energy of the rotor becomes

Vi s+ Viny+ Vin, + 320+ 23 (0 + 03)+
Em =%M Lol+ho?+h ol - (133)
2Zm 2 Vemzx+22em @1 Vony—=22cm Vem:

These same steps are performed on the platform and on the remaining seven particles.
These equations are then combined and simplified.
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The total kinetic energy for the Mingori system is
(134)
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The total energy of the Mingori system can be determined by adding the kinetic
energy of the system to the potential energy of the system. The only potential energy of the
system is the energy stored in the springs of the mass-spring-dashpot damper. From
Hooke's law, the system potential energy is written as

U) = %nu%yz‘ (135)

The total energy of the Mingori system is then

£W=E+U-E+%kzz+%k’z'2 (136)




D. MINGORI'S EQUATIONS OF MOTION
Mingori's equations of motion [Ref 3] are written as follows

Aoy -(A-C)ona3-Js' can+2 Mr L { on + Mr {* (o + 0y a5) +

m{ . -2(¢+ b)[z(on - @2 a3) + 2 0] + }+
22 {an+ 23 0, + 2(in - 2 05) -a s + o ay)]
. -2({-11)[{(&1-02@)4-?01]4-
m’ z’[—2{w1+25’o)1+z'(¢in-wzwg)—a’cosv(d>3+m,mz)]+ =0
o siny {# + 2’ [( + of - 0} ]}

A @y ~(C-A) 0 03-J' G0y +2 My { {00z + My (@ + 00y 003) +
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In the above equations, the following relationships are used
MrsM+M+4m+idmy

valting
m -
P L

M+4my N'+4m')
L = l( ra ) [} Il‘ T 38
{ulpz+p?) v=or

A=l «v-l;'-o-2mm¢+2m.’a"+(M’+4m,,')(l-v)l2
Cuhb+ly+4mpya2+4my o>
Jy' = 13'+4m.'¢'z
Chapter IV discusses how these equations are adapted for use in the numerical integration

routine.

E. NUTATION ANGLE
The nutation angle of the dual-spin system can be determined by substituting
Equations (124) and (125) into Equation (34) to arrive at
(139)
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F. CORE ENERGY

The platform core energy and the rotor core energy were defined in Equations (47)
and (48). The nutation angle as a function of core energy was then developed and is stated
in Equations (101) and (106). These equation can be used to predict the nutation angle of
the system as a function of time. Because the core energy as a function of time is not
available for the prediction, a postulated core energy must be developed. The initial value
of the actual core energy and the postulated core energy must match and is dictated by the
initial conditions. Parameters of the postulated core energy must be selected to accurately
model the actual core energy, to include the final energy state and the rate at which the it
approaches the final energy state. Two models were considered.

1. Exponential Core Energy Model

An exponential representation of rotor and platform core energy as a function of

time are expressed as follows

Ec postuiated (1) = (Ecy— Ec final) €-") + Ec final (140)

Ec posuiaed (8) = (Ec,’ - Ec final’) -7 + Ec final (141)
The initial core energies, Ec, Ec,, are determined by the initial conditions of the system.
The final core energies, Ec finah EC final’> & well as the exponential factors 7, 7/, must be
selected. The methodology for selecting these values is explained in Chapter V, Computer
Analysis,
2, Verhulst Logistic Core Energy Model
The exponential model, as will be explained in Chapter V, has excellent
agreement for stable conditions, but performs poorly for the unstable conditions. As an
altemative model, the following first order differential model is selected for the rotor and

43




platform respectively.

) Ecng)
ECM(‘) EC.*‘\ECM-ECJQ('")

(Ece) (Ec pmai) (143)
Ec; +(Ec pmai’ - Ec)eb="1)

This type of equation was first introduced by P. F. Verhulst to model human and
other populations [Ref 7). It is often referred to as the Verhulst equation or the logistic
equation. Although population dynamics appears to be unrelated to the stability of a dual-
spin system, the behavior over time of this equation compared to the stable and unstable
systems provides some insight. Figure (4) shows the Verhulst equation versus time for

(142)

EC posuimed’ (1) =

ine initial condity
& Verhulst Logistic Growth Model
140
N()= —NoK
120 No +(K -No)e'™

Figure (4) Verhulst Logistic Equation Versus Time
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It can be noted that if the initial value of the variable (in our case core energy) is
greater than the equilibrium value, it will approach the equilibrium value in a manner similar
to that of an exponential decay. For initial values that are less than but within one half of
the equilibrium value, the variable will asymptotically approach the equilibrium value. If
the initial value is less than one half of the initial value, the variable over time has a
somewhat different shape as it approaches equilibrium. Initially the slope is very small, but
increases to a maximum at about the one-half of the equilibrium position. Afier this
inflection point the variable approaches equilibrium asymptotically. The value of Ng equals
K is an asymptotically stable equilibrium. A value of N equals zero is an unstable
equilibrium. If the value of Ny is slightly greater than zero, then N(¢) will, as 1 —oo,
achieve the stable equilibrium of K. These types of curves will be utilized to describe both
the stable and unstable dual-spin system. The initial core energies, Ec,, Ec,’, would be
determined by the initial conditions of the system. The final core energies, Ec finai
Ec¢ final’, must be known or a best estimate used. The exponential factors, 7, 7, must be
determined experimentally, and are a function of the system parameters and initial

conditions. Chapter V provides additional details on the selection process.
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IV. NUMERICAL SIMULATION

A. NUMERICAL SIMULATION EQUATIONS OF MOTION
The equations for the dynamical quantitics needed for analysis of the dual-spin
system were previously developed. Manipulation was required to make these equations
suitable for numerical analysis, and is described below. The computer code is included as
Appendix B.
1. Mingori’s Equations of Motion
The equations of motion for the dual-spin system are listed as Equation set (137)
and (138). The Runge-Kutta numerical integration routine necessitated that the equations
of motion be a set of first order differential equations. Mathematical manipulation was
required to put them in this form. Variables representing groups of terms (A;, B;, C;, etc)
were introduced to simplify the manipulations of the equations and provide a suitable
format for incorporating the equations into the computer program. Mingori's equations can
be expressed in terms of these variables and the five time-dependent variables of motion
Aan+Anan+ Ay +Ayx=0
Basan+Byyan+By3i+ By ¥ +By=0
Cio0 +Csan+Can+Cy; =0 (144)
Dy1i+Dy7 +D3an+Dg=0
Eyi+E;¥+Esan+Esanp+E =0
where the variables A;, B;, C;, D;, E;, F;, and Z; are defined in the Notation section.
Clearly, these equations are highly coupled. Through a series of manipulations, including
substitution and combining sets of equations to eliminate common variables, one can arrive
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at a series of first order differential equations suitable for numerical integration techniques
& a;

d
&y
-F-BtpeD
G ;e Z4+Q Zz+21
: i % ZHE’L (145)
Zﬂ-%; Z4+21
-Fz-g-'; . Fﬁ%’;
% .. 23-0-%1- Z,+ll—;31
Z;-o%:l Z_-,-'-%l3

—5—11“( +CsBa1)y  CroAz CsBy Cyy
i‘.ﬂ.a'h, C Bys CAy CBy CAy CBys C
& 1_CioAz1 _CsBy

CAy CBy

a0 _ o = _A215, Ay _An
& -9 :‘lzsm3 Az . Az

do _ o - _Bug Bia; By g B
d = ™" "By ™ By’ Bys® Bys

The equations remain coupled, so the sequence in which the equations are numerically
integrated is important. Because the equations for Z and the equation for 2’ are functions of
zand 2/, z and 2’ must be integrated first. Similarly, Z and 3 must be integrated before o,
o before an, and @y before . In the computer program, the seven variables that
describe the motion are stored in a seven column matrix where @y = y(1]lil, @, =y[2][j],
@3 = Y{3]0], z = yl41{l}, 2z =yI510], 2’ = y(6]l), and 2’ = y[7]0). The index jidentifies the
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matrix location for each set of saved variables over time. All other needed quantities can be
calculated by using the seven time dependent variables describing the motion, and the:
parameters of the dual-spin system. These additional dynamical quantities are stored as one
dimensional vectors in the computer.
2. Angular Momentum
Angular momentum was derived in Equations (123), (124), and (125). The
angular momentum is a vector, but for verification of the conservation of angular
momentum, only the magnitude is required. Therefore, the three vectorial components for
both the rotor and the platform are computed individually as H1, H2, H3, H1p, H2p, H3p,
and then the magnitude of the angular momentum, h{j}, is determined and stored.
3. Nutation Angle
The nutation angle is determined using the previously determined relation
o= e (5 - ot () - (B2
Since it is a function of angular momentum, it can now be calculated and stored as

theta [j).
4. Energy
The total energy of the system, Equation (136), is determined by the sum of the
kinetic energy, as derived in Equation (134), and the potential energy of the particle masses
of the mass-spring-dashpot damper system, Equation (135). It is written as

EM=E+U=E+%I::2+%H:’2 (136)

In the computer program the kinetic energy, ke [j], is the sum of the constituents of
Equation (134), identified as T1 through T13. The potential energy is not explicitly stated
in the program, but instead is included in the calculation of the total energy, etotal [j.
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5. Core Energy and Postulated Core Energy
The platform and rotor core energy of the dual-spin system is defined in
Equations (47) and (48) respectively. All of the variables are available, such that in the
computer program the energies are readily calculated as Ecp [} and Ec[Jl. The postulated

nutation angle may now be computed. Equation (lOl)‘indiutes a sign must be selected
depending on whether the system is stable or unstable. The calculation of nutation angle
over time in Equation (34) will indicate stability. The computer program incorporates
conditional statements to assign the correct sign in the postulated nutation angle expression,
Equations (101) and (106). In the derivation leading up to the postulated nutation angle, ¢
has been defined as the relative rotation rate of the rotor with respect to the platform, and is
a positive value. This provides a positive contributioh to the angular momentum vector,
thus providing stability to the system. In Mingori's equations of motion, the reference
coordinate axes are fixed to the rotor, resulting in the relative rotation of the platform in the
counter-clockwise, or negative, direction. The postulated nutation angle equations were
developed using the former reference frame. To compensate for the difference in the
reference frames, the postulated nutation angle equations in the computer program have ¢
replaced by —o.

The postulated core energy as a function of time is computed for the platform and
the rotor, using Equations (140) and (141) for the exponential model and Equations (142)
and (143) for the Verhulst model. A postulated core energy model that accurately models
the actual core energy required several iterations to find the proper values of the exponential
factor.

Once the postulated core energy models are computed, the Q° and Q values, as
defined in Equations (100) and (107), are determined. The postulated nutation angles,
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etah j], and eta [§}, are computed using Equation ' (101) and (106) with the proper sign
previously determined.

The revised stability criterion, Equation (97), requires the time rate of change of
the core energy and the nutation frequency. Since both of these parameters may vary with
time, an estimate is made to determine if the modified stability criteria correctly predicts
stability or instability. The time rate of change of the core energy is approximated by taking
the difference of the final and the initial core energy values, and dividing by the time of the
simulation. This quantity is then divided by the initial nutation frequency. This stability
quantity is computed for both the rotor and the core, but is indicated in Table (1), Summary
of Analyzed Cases, simply as a negative or positive value.

B. COMPUTER PROGRAM

Essential to the verification of the stability criteria is the computer program that
integrates the dual-spin system equations of motion, calculates other dynamical quantities
of motion, and graphs the results. The system used was a Sun SPARC 2 workstation with
the computer code written in C. Intermediate graphics results were created using an in-
house computer graphics program. Final graphics output was performed by sending
output data to the Deltagraph graphics package. The sequence of steps of the computer
code are explained below. The computer code is included as Appendix B.

1. Initialization

The main computer program is compiled, along with the header file 'rkk.h’ and the

function ‘derivs’' immediately preceding it. The function 'derivs’ contains Mingori's
equations of motion rewritten into Equation (145), suitable for numerical integration.
Included in the header file 'rkk.h' is the numerical integration routine 'rk4,' the adaptive step
size function 'rkqc,’ and the driver for the numerical integration routine ‘odeint.’ Also

included are functions for creating and freeing the vectors and matrices used by the
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computer to store the data, and a function for error messages.
a. Variables

The variables required for both the numerical integration routine and
subsequent calculations are defined as global variables before the main program. Variables
used only within a specific function or only in the main program are defined in their
respective functions. Symbolic constants are also defined before the main program using
the #define statement.

The time dependent variables of motion of the Mingori system,
o, @y, 3, 2, £, 2', #’, are stored in a seven column matrix. All other parameters to be
graphed are stored in one dimensional vectors. Storage in the vectors and the matrix
permits retrieval by the graphics subroutine for plotting the variable over time.

b. Input File

The main computer program scans the input file for the necessary parameters.
All parameters of the Mingori system, Iy, I, [3, M, m, a, k, c, I’ [3', I3, M'.m’, a', k',
c¢’, and L, are controlled with the input file. Also, the initial conditions for the time
dependent variables of the system, @, @7, @i, 2, 2, 2, Z°, are specified. The length of
time of the simulation and a variable determining the desired accuracy are specified.
Finally, the exponential factor and the final energy for the postulated core energy functions
are read.

2. Preliminary Calculations
After the input values are read in, initial calculations are performed prior to the
numerical integration routine. All of the defined terms used by D. L. Mingori [Ref 3] in his
non-linear equations of motion are computed, as well as definitions required for the core
energy calculations, Is, Iy’, I total, It I, It sotal, and hrigia.
An option is available to specify critical damping in either the platform or the

51




rotor. By using the number 1000.0 in the input file for the damping coefficient, the main
program will automatically compute the coefficient required for critical damping of the
mass-spring-dashpot system and then use this value in all subsequent calculations.

Also computed is the factor ‘dxsav’, used in determining when to save data. The
steps between evaluating the equations of motion can become small, particularly when high
accuracy is desired. The interval required for graphics resolution is not as restrictive.
Accordingly, the variables are saved only if the step is greater than the previously saved
step by the factor ‘dxsav.’

3. Numerical Integration

Mingori's nonlinear equations of motion are numerically integrated by the fourth
order Runge-Kutta method, with adaptive step size control. The computer code used is
based on the Runge-Kutta method listed in Numerical Recipes in C, [Ref 8]. The adaptive
step size control permits larger integration steps during smooth, well behaved portions of
the functions, and smaller steps during the more irregular sections of the functions. The
integration routine accuracy can be controlled by a variable in the input file.

Mingori's non-linear equations of motion are contained in the function ‘derivs.’
As described previously, the equations have been rewritten as a series of first order coupled
differential equations suitable for numerical integration.

The output of the time dependent variables of the system, o, @2, @3, 2, Z, 2’, 2,
is stored in an array of seven columns, with the number of rows required a function of the
specified time interval and accuracy. A one dimensional vector is also created, with the
time stored for each step saved. This permits plotting the time dependent variables and
other quantities versus the time.

4. Calculation of System Parameters

With the array of the time dependent variables of motion as a function of time, the

other system quantities listed in Section A may now be calculated, with the values stored in
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vectors suitable for graphing.
S. Graphics Output
The remainder of the program is the necessary code for the in-house graphics

program. The graphics program is initialized, and the graphics window is opened. The
following parameters are then plotted over time: @), @2, @3 - O3 initials 2, 2, 2°, 2’
h — Kiniiiat, E — Einitiahy Etotal = Etoal initialy Ec — Ec initiahr Ec postulated — Ec postulated inisial,
E. - E. initial» Ec possulated’ ~ Ec postulated initial’» 6, T and 17. The window is then closed
and the initial conditions and pertinent time dependent variables and other quantities of the
simulation are then printed. This displays the graphical representation of the behavior of
the dual-spin system, and provides the actual initial and final values of the variables and
associated quantities.

For final graphics output, the Deltagraph graphics program is utilized. Computer
simulation data is sent as an output file. The data is then manipulated into a suitable graphic
with proper scaling and axes limits to best represent the dynamics of the computer
simulation. The graphs are contained in Appendix A.

6. Computer Program Validation

The two aspects of the computer code requiring validation were the numerical
integration routine and Mingori’s equations of motion with its associated dynamical
quantities for the dual-spin system.

The validation of the iiamerical integration routine was performed by using the
equations of motion for a simple torque-free axisymmetric body. Various initial conditions
were read in, and the dynamical quantities were then plotted versus time. The plotted
behavior was then compared to the actual response of the system.

The validation of Mingori’s equations of motion and the associated dynamical
quantities required a more comprehensive approach. The equations of motion required
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validation for proper behavior of each time-dependent variable of motion. Then the kinetic
energy, total energy, and angular momentum must be verified. Several cases were run
where the platform mass and inertia would become infinitesimally small. Then cases were
run where the rotor mass and inertia would become infinitesimally small. In each of these
cases, subcases were run where the mass-spring-dashpot system would be large,
dominating the dynamics, to the subcase where it became very small, so the system
approximates a rigid body. These different scenarios would uncouple and isolate the
various parts of the equations of motion to verify proper derivation of the equations. In
general, the platform and the rotor were tested under conditions varying from those in a
rigid body scenario to those in a lightly damped body. The system was then tested as a
rigid dual-spin system, as a dual-spin system with rotor damping only, and as a dual spin
system with platform damping only. The dual-spin system was then tested with both the
rotor and the platform containing dampers. For each case, the time dependent variables of
motion were plotted and analyzed. In all cases, the angular momentum was compared with
the initial angular momentum. Since all cases were torque free, the angular momentum
must remain constant. In all cases explored, the angular momentum verified the
correctness of the equations of motion. The code validation cases were not included in this

thesis due to the large number of graphs and data that were required to establish validation.




V. ANALYSIS

A. INTRODUCTION
1. Objective

The development of the revised energy-sink stability theory has been presented in
Chapter 11, and the equations of motion for a dual-spin system are contained in Chapter II1.
With the numerical integration code of Chapter IV, the revised energy sink stability theory
can now be verified. The core energy of the system is plotted as a function of time and
compared to the total energy for agreement with theory. The stability criterion computed
from the numerical simulation must then agree with Equation (97). Conservation of
angular momentum is used in each case to verify the correctness of the equations, and to
ensure the accuracy of the numerical integration routine. To approximate the core energies
over time, an exponential model and a model based on logistic growth are then explored.
The logistic growth model uses an equation presented by Verhulst [Ref 7], and is referred
to as the Verhulst model. Postulated models of core energy and the associated nutation
angles are then compared with the actual core energies and nutation angle for agreement.

2. Numerical Simulation Cases

Four distinct cases needed to be addressed. With the inertia ratio of the dual-spin
system greater than one, a stable case and an unstable case are analyzed (Cases (1) and
(4)). With the inertia ratio less than one, a stable case and an unstable case are also
analyzed (Cases (2) and (3)). For these four cases, an exponential model is used to
postulate the core energy and the corresponding nutation angle. For the case of the inertia
ratio greater than one and unstable, and the two cases of the inertia ratio less than one,
stable and unstable, the Verhulst model is postulated (Cases (5), (6), and (7)). The case of
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the inertia ratio greater than one and stable was not included; from the excellent agreement
of Cases (5), (6), and (7), one can see that excellent agreement would also occur for this
trivial case, making it unnecessary © include. All seven cases are summarized in Table (1).
For each case, the dynamical quantitics are plotted versus time until the system reaches a
stable state. Each quantity is then plotted for the first one hundred seconds to show detail.

s woual E
CASE ltwial STABILITY 3 2’ MODEL COMMENTS

1 1039  smble negative negative exponential ?pn?éﬁ.".?"
2 0907  swable negative negative exponential ?;mg

.. s . insufficient damping
3 0.897 unstable positive positive exponential in platform

.o - . insufficient damping
4 1.025  unstable positive positive exponential in platform
5 0907  suble negative negative Verhulst  Samecgnditions

6 0897 unsuble positive posiive Verhulst ~ Samecgndidons

7 1025 unsmble positive positive  Verhulst ~ Samecondidons

Table (1) Summary of Analyzed Cases

In Appendix A, -abic. (2) through (8) list the system parameters, core energy
parameters, and initial condiuuns. immediately following these tables are the graphs of the
important dynamical quantities. A typical geosynchronous dual-spin satellite was selected
for the numerical simulation. The platform and rotor masses and inertias are listed as part
of the initial conditions, and are the same for all cases. The inertia ratio is made greater
than or less than one by selecting L, the distance between the rotor and platform centers of

mass, to be 0.3 or 1.0 meter respectively. As a default set of values, all of the mass-
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spring-dashpot systems have m and m’ equal to 1.0 kg, k and &’ equal to0 1.0 N/m, and ¢
and ¢’ equal to 1.0 kg/sec. To establish the stable cases, additional energy dissipation is
required in the platform. To achieve this, cases (1), (2), and (5) have m’ increased to 20.0
kg and ¢’ increased to 10.0 kg/sec. In all seven cases, the initial conditions are the same.
The platform rotates at a geosynchronous angular velocity, the rotor spins at the higher rate
of 1.5 rad/sec, and a perturbation is introduced by an initial transverse angular velocity of
0.1 rad/sec. The mass-spring-dashpot systems have no initial displacement or initial
velocity. The core energy parameters are also listed in the tables. The initial core energies
are determined by the system’s initial conditions. The final core energies were taken from
the numerical simulation data. The exponential factors, r and 7/, were then determined
through an iterative process to best fit the modeled core energy to the actual core energy.

B. DISCUSSION

The individual cases can now be analyzed. The graphs of the dynamical quantities
are explored, and the data will affirm the revised stability theory.

1. Angular Momentum

For each case, the angular momentum is plotted versus time, Figures (5), (6),

(16), (17), (27), (28), (38), (39), (49), (50), (60), (61), (71), and (72). Because the dual-
spin system has no external forces, angular momentum must be conserved. For the stable
cases, there is excellent agreement, with angular momentum varying by less than one one-
hundredth of a percent over the length of the data run. This confirms the equations of
motion and validates the accuracy of the numerical integration routine. For the unstable
cases, the angular momentum percent difference increases to approximately four one-
hundredths of a percent. This is attributed to the increased dynamics of the system as it
establishes the spin about the transverse axis, introducing very small errors in the numerical
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integration routine. The errors remain very small, and the equations of motion and the
2. Total Energy, Platform and Rotor Core Energy

The graphs of energy are in Figures (7) through (10), (18) through (21), (29)
through (32), (40) through (43), (51) through (54), (62) through (65), and (73) through
(76). Several observations can be made.

The total energy curve reaches equilibrium before both the platform and the rotor
core energies do. For Case 2 and §, the total energy appears to reach a maximum and then
drop down to a final equilibrium value. Careful comparison of Figures (18) and (49),
shows the same system with the same initial conditions, but with a slightly different curve.
It can be deduced that the energy is not steady, but is still oscillating. The sampling
frequency coincidentally saved values near the same magnitude of energy in the region
from about 3000 seconds to 10000 seconds.

The total energy for Cases (1), (3), (5), and (6) decreased. For Cases (2), (4),
and (7), representing both stable and unstable systems, it increased. This can be explained
easiest with the use of equations (26) and (27). For Cases (2), (4), and (7), the system is
settling out about the axis with the minimum moment of inertia. Because there are no
external forces, the angular momentum is constant. In the equation for angular momentum,
Equation (26), the inertia terms are squared. But in the equation for energy, Equation (27),
the inertia terms are not squared. Therefore, as the angular velocity transfers to the axis
with the minimum moment of inertia, Equations (26) and (27) show that the energy will
increase. These equations apply to a simple dual-spin system. Equations (123) and (136)
for the Mingori dual-spin system would show the same result, provided the energy
absorbed by the mass-spring-dashpot system and the energy associated with the motor is
less than the energy increase associated with transferring the spin to the axis of minimum
moment of inertia. This is the situation for Cases (2), (4), and (7).
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The total energy value will always be between that of the platform core energy
and the rotor core energy. The platform core energy will have smaller values as its
equation assumes that the rotor is rotating at the same rate as the platform, thereby not
accounting for the large amount of kinetic energy associated with the rotor. The rotor core
energy will be higher than the total energy as it assumes that the slowly spinning platform
is rotating at the same rate as the rotor, providing the system with additional kinetic energy.

The hundred-seconds graphs of total energy versus time shows curves with
several different behaviors. The time rate of change of total energy includes the energy
dissipation rate of the rotor and platform mass-spring-dashpot systems, and the rate of
work due to the motor torque maintaining the relative rotation rate. In the hundred-seconds
graphs, aside from the general slope of the curve, there is no apparent correlation between
the specific behavior of the total energy to that of the core energies. Any relationship that
exists is masked by the motor and mass-spring-dashpot system’s influences on total
energy.

3. Stability Criterion

The revised stability criterion of equation (97) states that the time rate of change of
the core energy over the respective nutation frequency must be less than or equal to zero.
The sign of the stability criterion for each case must be determined. The time rate of change
of the core energy was determined by dividing the final less the initial value of the core
energy by the length of time of the case. The nutation frequencies were computed using
initial conditions. The sign of the stability criterion is listed in Tables (1) through (8). The
numerical value was not listed because the above assumptions used during the computation
give it no merit. Cases with inertia ratios very close to one were intentionally selected to
test the inertia ratio in this transition region. In all cases analyzed, the sign of the revised

stability criterion was consistent with the stability of the system.
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4. Postulated Core Energy and Nutation Angle
An explicit relationship for core energy as a function of time does not exist. If an
equation describing core energy did exist, then by using Equations (101) and (106) the
nutation angle as a function of core energy and time could be predicted for a dual-spin
system. This could then be extended to an actual dual-spin satellite. Given a sufficient
model of the satellite, the stability and the nutation angle as a function of time could be
predicted. An objective of this thesis is to see if an equation for the core energy can be
developed that would adequately describe the nutation angle as a function of time for both
the stable and unstable conditions. The exponential model and the Verhulst logistic model
were explored.
a. Exponential Core Energy Model
Observation of the core energy as a function of time for a stable system would
lead one to conclude that it behaves in an exponential manner. Equations (140) and (141)
are exponential representations of rotor and platform energy as a function of time. The
initial core energy was determined by the initial conditions of the dual-spin system. The
final core energy was determined by running the numerical simulation and calculating it at
the end of the simulation. If this was not available, a value could be estimated. Applying
the principle of conservation of angular momentum and noting that the system will
eventually spin about one of the primary axes, then the equations for angular momenturn
and total energy can be used to solve for the angular velocity about that axis. Substituting
this into Equation (47) or (48), one would arrive at an estimated final core energy.
Although it would not be the actual final core energy, as motor torque contribution and the
mass-spring-dashpot system’s energy dissipation was not accounted for, it would be
sufficiently close to satisfy the computational requirements. The exponential factor is
dependent upon the system parameters and initial conditions. For the cases presented,
different values were tried until good agreement was established with the core energy
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curve. Additional research would be required to determine a suitable exponential factor for
an actual satellite, taking into account the parameters and the initial conditions. Cases 1
through 4 contain the numerical simulation data for the exponential model. The actual and
postulated curves for core energy are contained in Figures (11) through (15), (22) through
(24), (33) through (37), and (44) through (48). For cases 1 and 2, both stable, there is
excellent agreement between the core energy and the postulated core energy. This in turn,
results in excellent agreement between the actual nutation angle and the modeled nutation
angle. The actual nutation angle is determined using the angular momentum quantities, as
shown . :quation (34). The time dependent variable required to compute the nutation
angle is the angular velocity about the spin axis. The modeled nutation angle is determined
in Equations (101) and (106), and is a function of only one time-dependent variable, core
energy. Herein lies the potential of the core energy theory. A sufficient model of core
energy over time, as in Cases 1 and 2, will provide an excellent prediction of nutation
angle, without requiring any knowledge of the specific angular velocities of the system as a
function of time.

Cases 3 and 4 illustrate the exponential model for an unstable dual-spin
system. The exponential model for core energy, and its associated nutation angle, rapidly
approach their final values. The actual core energy and nutation angle, however, behave
quite differently. The initial conditions have the system near an unstable equilibrium. The
system moves from the unstable to the stable equilibrium slowly at first. It then increases
the rate at which it approaches stable equilibrium, passes through an inflection point, and
then approaches equilibrium asymptotically. It is clear that the exponential model
represents this behavior poorly. Verhulst’s logistic equation was then addressed to
determine its adequacy in modeling the dual spin system.
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b. Verhulst Logistic Core Energy Model

The Verhulst logistic equation was introduced in Chapter IIl. Figure (4) and
the associated description explains the characteristics of the equation. The general shape of
the curves in Figure (4) is very similar to the stable and unstable cases of the dual-spin
system. Case 5 is the Verhulst model of the Case 2 stable system. Figures (55) through
(59) show that the Verhulst logistic equation can achieve excellent agreement with core
energy and nutation angle, just as the exponential model did.

Cases 6 and 7 are the same as Cases 3 and 4, except the Verhulst logistic
equation is used to model the core energies. Figures (66) through (70) and (77) through
(81) illustrate the modeled and actual core energies. Although the Verhulst model for rotor
core energy had excellent agreement, it performs poorly when modeling the unstable
system. The rotor core energy begins at an initial value and then decreases to an
equilibrium value. Referencing Figure (4), the Verhulst logistic equation will model the
TO10T COre energy exponentially.

To take advantage of the Verhulst logistic equation’s curve beginning near the
the unstable equilibrium and its progression to the asymptotically stable equilibrium, the
core energy must increase over time. The platform core energy behaves in this manner as
the nutation angle goes from a small angle to ninety degrees. Figures (68) through (70)
and (79) through (81) show the Verhulst modeled and the actual platform core energies,
and the modeled and the actual nutation angles. The agreement between the actual and
modeled energies and nutation angles was very good. The general shape of curve was
consistent, with only a slight deviation in the center of the curve, and then a small deviation
as the nutation angle approaches the equilibrium value of ninety degrees. With this
agreement, it is established that a core energy model exists that can represent both stable

and unstable cases. For each of the cases, core energy is plotted versus nutation the angle,
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Figures (15), (26), (37), (48), (59), (70), and (81). The graphics package permitted only a
semi-log plot of rotor core energy. The plot did not provide any insight on relationships
for the dynamics of the dual-spin system. For both the stable and unstable cases, the log-
log plot between platform core energy and the nutation angle is linear from ninety degrees
until about two degrees. For nutation angles less than two degrees, the platform core
energy asymptotically approaches the equilibrium value. Case S and 6 is the same system
with the same initial conditions, with the exception of the increased damping system in the
platform for Case 5. The initial platform core energies and nutation angles are very nearly
the same for each case, as shown in Figures (57), (58), (59), (68), (69), and (70). One
can conclude by this observation and the definition of nutation angle as a function of core
energy. Equation (101), that there exists a continuous platform core energy versus nutation
angle curve. The appearance would look similar to the curve created by splicing Figures
(59) and (70) together. By varying one parameter, for example platform energy dissipation
rate, the system would progress along this curve and achieve equilibrium with a zero
degree nutation angle or achieve equilibrium with a ninety degree nutation angle. This is
what was done with cases 5 and 6. Adding as the third dimension to the curve the time rate
of change of core energy would then reveal the stability, the initial direction, and the rate at
which the system will arrive at the equilibrium condition.

C. FURTHER RESEARCH

The revised stability criterion for a dual-spin, quasi-rigid, axisymmetric system was
established. Numerical simulation was then used to verify the revised stability theory.
Further research could be conducted in several areas. The specific contributions to the total
energy could provide some insight. How much energy and in what manner does the motor
torque contribute to the total energy for both the stable and the unstable cases? Also, by

plotting the energy dissipation system’s contributions over time, one could determine its
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effect on total energy, as well as comparing it to the core energy theory in Equation (97).
Relationships for core energy as a function of time were explored. It was established
that the Verhulst logistic equation could be applied to a stable dual-spin system. By
changing its parameters, this equation also applied to the unstable dual-spin system with
very good agreement. Further research could be directed to find one equation that would
address both the stable and unstable cases of the dual-spin system without changing its
parameters. The equation for logistic growth with a threshold [Ref. 7] as applied to the
platform core energy shows promise in this regard.
Ec = —r’(l __E¢ )(1- 2 (146)

EC unstable’ Ec final’
Given the jaitial conditions, the platform core energy will typically start at some

intermediate vaiue and will either increase or decrease as the dual-spin system reaches
equilibrium with a nutation angle of either zero degrees or ninety degrees. Equation (146)
would be well suited to model the platform core energy. There exists a platform core
energy value, Ec unsable » Where the system is at an unstable equilibrium. Equation (146)
shows that at exactly this value, the rate of change of the platform core energy will be zero.
For any value below the unstable equilibrium value, the core energy will approach the value
of zero. For Case 5, the final core energy for the stable condition was 0.122 J. Although
this final condition cannot be represented in Equation (146), it is sufficiently close that the
equation may still be used to represent the platform core energy. For any value above the
unstable equilibrium value, the core energy will approach the equilibrium value of E¢ finaf,
associated with the nutation angle at ninety degrees. Initial conditions would determine the
initial core energy. The final core « ‘rgy can be estimated as described earlier in this
chapter. Finally, the exponential factor 7 may then be determined based on the system
parameters and initial conditions.

Additional analysis can be performed on the revised stability criterion. The time rate
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time or versus other parameters. The behavior of this stability criterion and the magnitude
of it for various conditions could provide some insight on postulating a relationship for

core energy as a function of time.
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VL. CONCLUSION

The existing energy-sink stability criterion was introduced as

§2+§9: €0 @1
A A

It was shown that an inconsistency in the development disproves the existing
assumption that the motor energy input exactly balances shaft frictional losses. A revised
energy-sink stability criterion was then developed based on Hubert’s definition of core
energy and was presented as

EC. ..ES: = §P—+§ <0 (97)

A ¥ A X

This criterion compliments the existing theory. Numerical simulation was required to
validate the theory. The Mingori dual-spin, quasi-rigid, axisymmetric system was selected
for the numerical simulation. Several cases were analyzed to verify the revised energy-sink
stability criterion. By correctly postulating the platform or the rotor core energy, the
stability of the system could be determined. Specific knowledge of the energy dissipation
rates for both the platform and the rotor are no longer required.

An exponential model and the Verhulst logistic model for core energy, and their
relationship to the nutation angle, were explored. The exponential model had excellent
agreement with the stable cases, but was inadequate in representing the unstable cases. The
Verhulst logistic model established that an explicit relationship for core energy could be
developed. Nutation angle as a function of core energy for the dual-spin system could then
be predicted. The excellent agreement of the postulated core energy and nutation angle with
the actual core energy and nutation angle confirms the revised energy-sink stability
criterion. Additional research is required to find an optimum equation for core energy as a
function of time to represent both the stable and unstable cases.

66




REFERENCES

lorillo, A. J., "Nutation Damping Dynamics of Axisymmetric Rotor Stabilized Satellites,"
Paper presented at ASME Winter Meeting, Chicago, IL, 1965; see also "Analyses Related
to the Hughes Gyrostat System,"” Hughes Aircraft Co., El Segundo, CA, Dec. 1967.

2Likins, P. W., "Attitude Stability Criteria of Dual-Spin Spacecraft,” Journal of
Spacecraft and Rockets, Vol. 4, No. 12, Dec. 1967, pp. 1638-1643.

3Mingori, D. L., "Effects of Energy Dissipation on the Attitude Stability of Dual-Spin
Satellites,” AJAA Journal, Vol. 7, 1969, pp. 20-27.

4Ross, 1. M., "Nutational Stability and Core Energy of a Quasi-Rigid Gyrostat,"” Paper
presented at AAS/AIAA Spaceflight Mechanics Meeting, Houston, TX, Feb. 1991.

SHubert, C., "Spacecraft Attitude Acquisition from an Arbitrary Spinning or Tumbling
State," Journal of Guidance and Control, Vol. 4, No. 2, Mar.-Apr. 1981, pp. 164-170.

SHughes, P. C., Spacecraft Attitude Dynamics, p 203, John Wiley and Sons, Inc, 1986

TBoyce, W. E., and DiPrima, R. C., Elementary Differential Equations and Boundary
Value Problems, pp 64-65, John Wiley and Sons, 1986.

8Press, W. H., and others, Numerical Recipes in C, pp. 566-580, Cambridge University
Press, 1988.

67




APPENDIX A NUMERICAL SIMULATION DATA

CASE 1: !Il> 1, Stable, Exponential Model
4

System Parameters Initial Conditions
Platform Rotor Platform Rotor
! = 0.0 = 0.
I'=1600kgm® ;= 1000kgm? : oo: : oz:
Iy'=1500kgm? 3= 1200 kgm? r= Ds = 00%
’_ s =

M=10000kg M= 7000 kg 0y =1727x1058d o= 1 5md
m= 200 k m= 1.0 k

g g o = o.mgcd w=0.02d
ad= 10m a= 1.0 m
k= 1.0% k= 1.0{% Core Energy Parameters

’ k k Platform Rotor
= 10.0-3&5- c= 1.os—e§-
Eciniial = 13.402) E. inisiai= 31454
L= 03m lewma- 1039 Ecfnal = 0.0723 Ecfina = 3161.7)
1o £ £
. C .
A A
Y = -00134s! r = -00134s"1
; = —— —— ——

Table (2) Case 1 Parameters
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Case 1:1s/I1, Stable, Exponential Model

3162

Figure (11) Modeled and Actual Rotor Core Energy and Nutation Angle Versus Time
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Figure (12) Modeled and Actual Rotor Core Energy and Nutation Angle- First 100 Seconds
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Case 1: I¢/It>], Stable, Exponential Model
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Figure (13) Modeled and Actual Platform Core Energy and Nutation Angle Versus Time

Case 1: Is/Io], Stable, Exponential Model
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Figure (14) Modeled, Actual Platform Core Energy and Nutation Angle- First 100 Seconds
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Case 1:Is/Ic], Stable, Exponential Model

Figure (15) Core Energy Versus Nutation Angle
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CASE 2: -;a <1 , Stable, Exponential Model
[

System Parameters Initial Cond:ucas
Platform Rotor Platform Rotor
= 0.0 = 00
I'=1600kgm? I;= 1000 kgm? m z =
) y= oo0mm ;= 00Mm
I'=1500kgm?  I3= 1200 kgm? s s
M'=10000kg M= 7000 kg 0y=727x1050d  gy= 1 smd
m'— 20.0 kg m= 1.0 kg o = 0‘10% o= 0.0g_
d= 10m a= 10 m
= 10 g. k= 1.0 g- Core Energy Parameters
’_ - k. Platform Rotor
¢= 10058 - 10X
E. initial = 15.34] Eciniai= 3147.3)
L= 10m luew- 0907 ||Epud = 01233 Ecfat = 31709]
froa Ec E
. C .
—= =  negative =< = negative
A A
Y = -00102s"! r = -00102s!

Table (3) Case 2 Parameters




Case 2:I3/li<], Stable, Exponential Model
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Figure (16) Total Energy and Percent Difference Angular Momentum Versus Time

Case 2:1s/It<1, Stable, Exponential Model
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Figure (17) Total Energy and Percent Difference Angular Momentum - First 100 Seconds
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Case 2: . tial Model
1367 ase 2:Is/It<], Stable, Exponen 3175

Figure (18) Total Energy and Rotor Core Energy Versus Time

Case 2:1s/It<]1, Stable, Exponential Model

Figure (19) Total Energy and Rotor Core Energy - First 100 Seconds
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Figure (20) Total Energy and Platform Core Energy Versus Time

Case 2: Is/It<1, Stable, Exponential Model

Figure (21) Total Energy and Platform Core Energy - First 100 Seconds
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Case 2:1¢/li<1, Stable, Exponential Model
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Figure (22) Modeled and Actual Rotor Core Energy and Nutation Angle Versus Time

Case 2: Is/lt<1, Stable, Exponertial Model

3150 9.7
- 1OLOT COTE energy
31495
. = ~ modeled rotor core energy | 9.6
3149 |- 2 AW
= 31485 | A A 1°°
3 Al *|”
1 2 -~
§ 3148 | D 4943
-F S g
\J
5 31475 3 5
- 933
3147 } . . =
- putation angle
- - 92
31465 - «-- modcled nutation angle (rotor)
3146 1 | 1 1 1 L [ [ ] | 9.1

Figure (23) Modeled, Actual Rotor Core Energy and Nutation Angle - First 100 Seconds
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Case 2: Is/It<], Stable, Exponential Model
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Figure (24) Modeled and Actual Platform Core Energy and Nutation Angle Versus Time

Case 2:1s/li<1, Stable, Exponential Model
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Figure (25) Modeled, Actual Platform Core Energy and Nutation Angle- First 100 Seconds
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Case 2:18/It<]1, Stable, Exponential Model

3175

Figure (26) Core Energy Versus Nutation Angle

81




Initial Conditi

Platform Rotor
7 = 00 m z=00m
Y= o00m t=00m
M'=10000kg M= 7000 kg oy=1721x10°M o= 1s5md
m= 10k m= 1.0
g kg 0 = o.wgcd ap= 0.00d
d= 10m a= 10m — —
K= l.Og- k= l.Og- Core Energy Parameters
, k k Platform Rotor
= 10 ;xs- c= 10 505-
Eciitial = 15.1) Eciniiai= 3061.6])
L= 10m ’, = 0897 ||Ecpma’ = 11609)  E.pnu = 14899)
t total
Ec .. Ec .
— mnve —_— positive
2 A
Y = -0005s! r = —0005s!

Table (4) Case 3 Parameters
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Case 3:18/1i<1, Unstable, Exponential Model
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Figure (27) Total Energy and Percent Difference Angular Momentum Versus Time

Case 3:1s/It<1, Unstable, Exponential Model
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Figure (28) Total Energy and Percent Difference Angular Momentum - First 100 Seconds
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Case 3:13/li<], Unstable, Exponeatial Model
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Figure (29) Total Energy and Rotor Core Energy Versus Time
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Case 3:1¢/li<1, Unstable, Exponential Model
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Figure (30) Total Energy and Rotor Core Energy - First 100 Seconds
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Case 3: Is/ic], Unsta odel
1370 ase 3: Is/li] ble, Exponential M 1200

Figure (31) Total Energy and Platform Core Energy Versus Time

Case 3: Is/li<1, Unstable, Exponential Model

Figure (32) Total Energy and Platform Core Energy - First 100 Seconds
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Figure (33) Modeled and Actual Rotor Core Energy and Nutation Angle Versus Time
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Figure (34) Modeled, Actual Rotor Core Energy and Nutation Angle - First 100$ecmds
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Case 3: Is/li<l, Unstable, Exponential Model
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Figure (35) Modeled and Actual Platform Core Energy and Nutation Angle Versus Time
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Case 3: Is/lt<1, Unstable, Exponential Model
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Figure (36) Modeled, Actual Platform Core Energy and Nutation Angle- First 100 Seconds
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Case 3: Is/licl, Unstable, Exponential Model
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Figure (37) Core Energy Versus Nutation Angle




CASE 4: !IL > 1 , Unstable, Exponential Model
t

System Parameters Initial Conditions
Platform Rotor Platform Rotor
= X = 00
I'=1600kgm? L= 1000 kgm? d 0.0 m z=00m
, Y= 00D ;=00m
Iy'=1500kgm? L= 1200 kgm? s 5
M'=10000kg M= 7000 kg oy=727x10° 0 o= 1 smd
m= 10k m= 10 k
8 8 o= o10md o= 0004
d= 10m a= 10m -
¥= 10M k= 10N Core Energy Parameters
’ k k Platform Rotor
¢= 10 Fec& c= 1.0 s_ecg'
Ecinial = 132) Eciniiat= 30597
L= 03m lumlo 105 | |Ecpu = 14707 Eeps = 15525)
t total ,
% - posive € = positive
Y = -.0005s"! r = -0005s"!

Table (5) Case 4 Parameters
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Case 4: Is/I>], Unstable, Exponential Model
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Figure (38) Total Energy and Percent Difference Angular Momentum Versus Time

Case 4: Is/It>1,Unstable, Exponential Model
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Figure (39) Total Energy and Percent Difference Angular Momentum - First 100 Seconds
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Figure (40) Total Energy and Rotor Core Energy Versus Time

1364 Case 4: Is/Il, Unstable, Exponential Mode’

Figure (41) Total Energy and Rotor Core Energy - First 100 Seconds
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Figure (42) Total Energy and Platform Core Energy Versus Time

1364 Case 4:Is/Iv], Unstable, Exponential Model

Figure (43) Total Energy and Platform Core Energy - First 100 Seconds
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Figure (44) Modeled and Actual Rotor Core Energy and Nutation Angle Versus Time

Case 4:1s/It>1, Unstable, Exponential Model
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Figure (45) Modeled, Actual Rotor Core Energy and Nutation Angle - First 100 Seconds
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Case 4:Is/I>], Unstable, Exponential Model
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Figure (47) Modeled, Actual Platform Core Energy and Nutation Angle- First 100 Seconds
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Case 4:13/I>1, Unstable, Exponential Model

Figure (48) Core Energy Versus Nutation Angle




E

cms:%«x , Stable, Verhulst Model
4

System Parameters Initial Conditions
Platform Rotor Platform Rotor
mw
I'=1600kgm® = 1000 kgm? :: - z'g: ' g'g:
Iy=1500kgm?2 3= 1200 kgm? = s ¢ = 005
M'=10000kg M= 7000 kg oy=721x10° M gy . 5
m= 200 kg m= 10 kg o = 0-10?&‘1 = o,ogcd
d= 10m a= 10 m — A
K= 10N k= 10N Core Energy Parameters
’ k. Platform Rotor
¢=100% - 103%
Ecimiial = 15.341] Ecinitiat= 3147.3]
Le 10m Jusmde 0907 ||Efuad = 012]  Egua = 317093
Lt socal £l £
-—’ = mﬂve‘ — ncgau'vc
A A
Y = -0002s! r = -0002s!

— n
A ——wd

Table (6) Case S Parameters




Case §: Is/Iic], Stable, Verhuist Model

1367 0.0
1366.8 1 0.04
1366.6 4 003 E
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g 13662 <4 o001 g
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1365.4 <4 003 E'
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O 1000 2000 3000 4000 S000 6000 7000 8OO0 9000 10000
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Figure (49) Total Energy and Percent Difference Angular Momentum Versus Time

Case 5:1s/It<], Stable, Verhulst Model
1366.5 0.05

| 11
o b LA R
,mNW\,\VU W\/V\/VV E

eacegy (/)

1365.1 |-

13649 - -003%
13647 |- | = total energy ~ ((t)-1(0)¥(0) - 004

Figure (50) Total Energy and Percent Difference Angular Momentum - First 100 Seconds
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energy ()
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Figure (51) Total Energy and Rotor Core Energy Versus Time
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Case 5:1s/li<1, Stable, Verhulst Model

Figure (52) Total Energy and Rotor Core Energy - First 100 Seconds
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Figure (53) Total Energy and Platform Core Energy Versus Time

13665

Case 5:1s/li<1, Stable, Verhulst Model 168

Figure (54) Total Energy and Platform Core Energy - First 100 Seconds
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Figure (55) Modeled and Actual Rotor Core Energy and Nutation Angle Versus Time
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Figure (56) Modeled, Actual Rotor Core Energy and Nutation Angle - First 100 Seconds
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Case §: Is/Ii<1, Stable, Verhuist Model
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Case §:1¢/li<1, Stable, Verhulst Model
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Figure (58) Modeled, Actual Platform Core Energy and Nutation Angle- First 100 Seconds
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Case 8:Is/It<], Stable, Verhuist Model

Figure (59) Core Energy Versus Nutation Angle
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CASE 6: f‘ <1 , Unstable, Verbulst Model
t

Platform Rotor

l]'- 1600 kgmz L= 1000 kgm2
Iy’ = 1500 kgm? L= 1200 kgm?
M=10000kg M= 7000 kg
m= 10 kg m= 10 kg
ad= 10m a= 10 m
¥= 10N k= 10N

’ k k
¢= 10 -se% c= 1.0 é‘
L= 10m 4 0.897

Imxal

Initial Conditions
Platform Rotor
7= 00 m z = 00m
¥ = 0.0 %l i = 00 ?
oy =721x1050d o= 1.sgcd
0 = o.1ogcd = o.olslécd
Core Energy Parameters
Platform Rotor
—T-_—————_-__—-——_——--—-__W_———_—
E¢ initial = 15.1) E¢ initial = 3061.6J
Ecﬁ,.,,{ = 1161.0] Ecﬁ,.,l = 14899
E¢ . Ec ..
—_— = positve -— = posiive
A A
Y = -1x10%s1 r = -1x10%s!

Table (7) Case 6 Parameters
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Figure (60) Total Energy and Percent Difference Angular Momentum Versus Time

Case 6: Is/li<i, Unstable, Verhuist Model
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Figure (61) Total Energy and Percent Difference Angular Momentum - First 100 Seconds
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Figure (62) Total Energy and Rotor Core Energy Versus Time

Case 6:1s/1:-  Unstable, Verhuist Model

Figure (63) Total Energy and Rotor Core Energy - First 100 Seconds
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157 Case 6: Is/licl, Unstable, Verhuist Model

Figure (64) Total Energy and Platform Core Energy Versus Time
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Case 6: Is/It<}, Unstable, Verhulst Model

Figure (65) Total Energy and Platform Core Energy - First 100 Seconds
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Case 6: Is/It<], Unstable, Verhuist Model
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Figure (66) Modeled and Actual Rotor Core Energy and Nutation Angle Versus Time

Case 6:1s/It<1, Unstable, Verhulst Model

Figure (67) Modeled, Actual Rotor Core Energy and Nutation Angle - First 100 Seconds
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Figure (68) Modeled and Actual Platform Core Energy and Nutation Angle Versus Time
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Figure (69) Modeled, Actual Platform Core Energy and Nutation Angle- First 100 Seconds
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Case 6: Is/licl, Unstable, Verhuist Model 10000
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Figure (70) Core Energy Versus Nutation Angle
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= A = .0
I’'=1600kgm? L= 1000 kgm? j g: o : :o o
Iy'=1500kgm? 3= 1200 kgm? = Vs t =005
M'=10000kg M= 7000 kg oy =727x105M o= 15
m= 10 kg m= 1.0 kg W = oJoﬂ = oomd
d= 10m a= 10 m = e
K= 10 g- k= 10 g. Core Energy Parameters
k Platform Rotor
E. initial’ = 1321 Ecimsat=  3059.7)
Le 03m lusala 1025 ||Ep = 124713 Ecfnat =  15525]
hinal EC' EC
—_— = mitve _—= Miﬁve
A A
Y = -1L1x10%s! r = -1.1x10%s!

Table (8) Case 7 Parameters
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Case 7: lIs/Io>], Unstable, Verhulst Model
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Figure (71) Total Energy and Percent Difference Angular Momentum Versus Time

Case 7:1s/It>1, Unstable, Verhulst Model
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Figure (72) Total Energy and Percent Difference Angular Momentum - First 100 Seconds
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Figure (73) Total Energy and Rotor Core Energy Versus Time
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Case 7: 1s/It>1, Unstable, Verhuist Model

Figure (74) Total Energy and Rotor Core Energy - First 100 Seconds
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Case 7: ls/I>], Unstable, Verhuist Model

1385

Figure (75) Total Energy and Platform Core Energy Versus Time

Case 7:1s/l], Unstable, Verhulst Model

Figure (76) Total Energy and Platform Core Energy - First 100 Seconds
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Case 7: Is/Ic>]l, Unstable, Verhuilst Model
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Figure (77) Modeled and Actual Rotor Core Energy and Nutation Angle Versus Time

Case 7: Is/It>1, Unstable, Verhulst Model

Figure (78) Modeled, Actual Rotor Core Energy and Nutation Angle - First 100 Seconds
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Case 7: Is/lv>1, Unstable, Verhulst Model
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Case 7: Is/It>1, Unstable, Verhulst Model
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Figure (80) Modeled, Actual Platform Core Energy and Nutation Angle- First 100 Seconds
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Figure (81) Core Energy Versus Nutation Angle
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APPENDIX B  COMPUTER PROGRAM CODE

l".‘.‘..'.'.‘lt.“-'. d.cl.‘.tion‘ senastestseboatdnstashedf

#include <math.h>
finclude <malloc.h>
#include <stdio.h>

¢define MAXSTP 15007 /¢ odeint </
tdafine TINY 1.0e-40 /% odeint ¢/
#define PGROW -0.20 /% krqc */
#define PSRRNK -0.25 /* krqc */
d4define TCOR 0.06666666666666666666666666666667 /* 1.0/15.0 krqc*/
tdefine SAYETY 0.9 /* krqc ¢/
¢define ERRCON 6.0e-4 /* krqe */
f1dat **y=0, *xx=0: /* defining declaration rkdumb ¢/
int kmax=0, Xkount=l: /* defining decl2:ration odeint */

float °*xp=0, *°*yp=0, dxsav=0; /* defining declaration odeint */

,'....'Q.t...t."'. error function 't..tt.....t"..“..../

void nrerror(error_text)
char exrozr_text!]:

{
void exit():

fprintf (stderr, "Numeszical Recipes run-time error...\n"):
fprintf (stderx, "¥s\n", exror_text):

gprintf (stderr.”...now exiting to system...\n"):

exit (1):

)

l""""'..".'OOQ’C" V'ctOt tunction t....'...t.Q...t.tt.i..»,
float *vectorr(nl,ah;
int nl, nh:

{
float *v:

v e (float *)malloci{(unsigned) (nh-nl+l)*sizeof(float));
if {!v) nrerror(“aliccation failure in vector()”"):
return venl:

}

,Q'."'Q.QQ..Q"""' m.t‘ix function .t..t..t.""."ttai.'.ln‘cl/
float **matrix(rnzl,=n:ch,nci,nch)

int nxl, nzh, necl, aca:

i .
int &
float **m;

m e {float **) mallcc{{unsigned) (nrh-nrl+l)*sizeof(float*)):
if (!m) nrerzor{“aslliccation failure 1 in matrix()"):
m -= nrl;
for (i=nzl;i<=nzh:i+~)
R
mi{i] =« (2lcat *) malloc{(unsigned) (nch-ncl+l)*sizeof(float)):
if (!mli;) rzerror(™alloc tion failure 2 in matrix()"):
mii) -= rcl:
}
return m;
i

/l.!"."'."'t"..'o ::.. VCCtO: fuﬂction ..."OO".Q..Q‘Q"‘!/
void free_vector(v.ni,ah)

float *v:

int nl, nk;
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free !l (char®) (vénl)):
}

,.'...'.Q.'Q'..".....'.. “.. nt“x ‘\lnct‘o" @0Sadbaddqadnptectany

void fres_matrix(m, nrl,nch,ncl,nch)
float **m;
iat nrl, nrh, ncl, nch;

int 12

toz(i—n:h:1>-n£1:1--) free((char*) (m{i)+ncl)):
free((chaz®) (ménrl)):

FAARAAA AT 22T 2222 Y rkd function teesecsnsnstassdnttacdy

vofd rkatly,dydx,n,x. h, yout,derivs)

float y(], dydx(], x, h, yout{):
void (*dexivs)():
int n;

{

int {;

float xh, hh, hé, <dym, *dyn, *dyt, *yt, *vectorr():
void free_vector!):

dym = vectorr{l,n):
dyn = vectorr{l,n):

dyt = vectorr(l,n):

yt = vectorr(l,n);

hh = h*0.5;

hé = h/6.0:

xh = x<+hh;

for (i=l;i<=n:i++) yt(i) = yli]+hh*dydx(i]: /* first step */
(*decivs) (xh, yt,dyt,dydx) ;

for (i=l:i<=n;ie+) yt{i] = y{il+hh*dye({];
(*decivs) (xh, yt, cym, dyt);

foz (i=l;ic<=n:i+e)

{
yt{i) = y[i)+h*dym[i]};
?vn(il = dyt{i)+dym{i}):

(*derivs) (x+h,yt,dyt.dym):

for (i=l;i<en:i++) yout(i]) = yli)+h6® (dydx[i]+dyt (1}+2.0dyn[i;):

free_vector(yt,1l,n):
free_vector(dyt,l,n):
free_vector (dym,1,n): -

free_vector(dyn,1.n):
}

FAAR AL Y YRR ) tkd“mb tunetion .atot..t...o....-oc-.cc».-/

void rkdumd(vstart, avar,xl, x2,nstep,derivs)
int nvar,nstep;

float vstart(),xl,x2;

void (*derivs) ():

{

int 4, k;

float x, h;

float *v, *vout, *dv, *vectorr():

void rk4(), nrerror(), free_vector():

v = vectorr(l,nvar):

vout = vectorr({l,nvar):
dv =« vectorr(l,nvar):
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for (4=1;i<=pvar;i++)

{
v(i) = vstartii}:
yl1)(1) = vli];

)
xx{l] = xl:
x = x1;
h = (x2=-x1)/nstep:
for gk-l:k<-nstop:k*‘)

{
(*derivs) (x,v,dv):
zkd (v,dv, nvaz, x, h, vout,decivs); .
if (x+h == x) nrerror(“Step size too small in routine RRDITINT);
X 4= h;
xx[kel) = x;
for (i=1:i<envar:i+e)
{

vii} = vout[i):
ylil(k+l] = v(i]:
)

free_vector (dv,1,nvar):
free_vectoz {vout, 1, nvar);
free_vector (v,1,nvar);

/Q."."'...'Q....Q‘.. tch ‘unction RECRARNCERARRCNORDedRbdaspsn)

void rkqe(y,dydx,n, x, htry,eps,yscal, hdid, hnext, derivs)

f£loat yl(], dydxi], *x, htry, eps, yscali], *hdid, *hnext;
void (*derivs) ():
int n;

{

int i;

float xsav, hh, h, temp, errmax:

float *dysav, *ysav, *ytemp, *vactorr():
void rk4(), nrerror()., free_vector():

dysav = vectorr(l,n):
ysav « vectorr(l,n):
ytemp = vectorr(l,n):
xgav = (*x);

for (i=l;ic=n;i++)
{

ysav({i) = y[i);
filynv{i) = dydx(1):

h = htry:
fox (; : )
{
hh « 0.5*h;
rkd (ysav,dysav,n, xsav, hh, ytemp,derivs);
*x = xsav+hh:
(*derivs) (*x, ytemp, dydx) ;
rk4 {(ytemp,dydx,n, *x,hh, y, dexivs);
*x « xsav+h;
if (*x == xsav) nrerror(“Step size too small in routine RKQZ"):
k4 (ysav,dyssv, n, xsav, h,ytemp,derivs):
erzmax = 0.0;
for (iml;i<mn;ies)
{

ytemp(i] = y[i]~ytemp[i):

temp = fgbs(ytemp{i]/yscalli}):
if (errmax < temp) errmax = temp;
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exzmax /= eps:
if (erzmax <~ 1.0)

{
*hdid = h;
*hnext = (exrmax > ERRCON ? SAFETY*h*axp(FGROW* Inn(rrimax))

LI AT I

break:;
)
h = SAFETY*h*exp (PSHRNK*loq (erzmax)):

} .
for (i=1l:;:i<=n;i++) y[i] += ytempl{i]*FCOR:
free_vector (ytemp,l.n);
free_vector (dysav,1.n);
free_vectorx (ysav,1.n);
}

’.'."';".Q"."O"' m‘nt ‘“nction .0.'.'.'."'0.0‘.“.!/
vgid odctnt(ysta:t.nvut,:t,xz.eps,hl.hmin,nok,nbad.de:ivs,thc)

float ystart{), xl. x2, eps, hl, hmin;
int nvar, *nok, *nbad:
void(*derivs) ():

void(*zrkqe) ()

(

int nstp, 1:

float xsav, x, hnex:, hdid, h;

float *yscal, *y, *dydx, *vectorx!():
void nrerrox(), free_vector():

yscal = vectorr(l,nvar):
y = vectorr(l,nvar):
dydx = vectorr(l,nvar):;
X = x1;
h = (x2 > x1) ? fabs(hl) : -fabs(hl):
*nok = (*nbad) = kount = Q:
for (i=1;i<=nvar:i++) yli] = ystart{i):
if (kmax > 0) xsav = x-dxsav*2.0;
for (natpel:nstp<=MAXSTP:nstp++)
{

(*derivs) (x,y,dydx) ;
for (i=1;i<envar;ies) yscal[i] « fabs(y[i))+fabs(dyd=[i}l W) +Tiv;
if (kmax > )

{

if {labs(x-xsav) > fabs(dxsav))

if (kount < kmax-1)
{

xp{++kount} = x;
for (iml;i<=nvar:i++) ypli)ikount}-yi{i):
XSAV = x;
}
}

if ((x+h=x2)* (x+h=x1) > 0.0) h = x2-x:
('xch)(y.dydx.nvnx,sx.h,ops,yscal,&hdid,&hnext.dcrivs):
if (hdid == =} ++(*nok);: else ++(*nbad);
if ((x~x2)*(22-x1) >= 0.0)

{

for !i=l;icenvar:i++)
ystart{i) « y(i):
if (kmax)

{
xp[++kount J=x;
for (i=1;i<envar:i++) ypli} (kount) = y(i):
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free_vector (dydx, 1, nvar):
free_vector(y,l,nvar):
free_vector(yscal,l,nvar):
return;

}
if (fabs(hnext) <= hmin) nrerror("Step size too small in ODEINT™):
h = haext:
) A
nxerzor ("Too many steps in routine ODEINT™):
}
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L =

f00000008000000000000¢ GuClarationg 200000004 0est0ditsesctstatcrasy

¢include “rkk.h"
tdefine N 7

Sdafine MAXARRAY 100000

fdatine $Q(x) ((x)*(x))

int kount, kmax:
..”‘ .":
dusav, dxmin, dxlimit;
11=0.0, 12=0.0, 13=0.0, n-oéo. -0.06 lb~0606 1-0606 :-06n5 c-néns
11 <0,12p=0.0,1I3p=0.0,4p=0.0,mp=0.0,mbp=0.0,8p=0.0,kp~0.0,rp 0. u;
L-stg. sl 0.6. 81-0.6. v=0.0, ho=0.0, rhop=0.0, L1~0.0, 1.2-0.0:
A=~0.0, C=0.0, J3p=0.0, wip=0.0:

,.‘....;"...'l."'.""' m“r!o"s oF NTXON LA A AL A LR A TR N RNy

float
float
float
float
float
float

void derivs(x,y,dydx)
x, yl), dydx|):

Lloat
{

float
float
float
float
float

float
£loat
float
float

£loat
float

float

float
float

float

dydx(4] = y[S):
dydx(6) = yl7):

seta=0.0, dydxzeta=0.0:

Al=0.0,
AS=0.0,
Al7=0.0,
A25=0.0,
B31=0.0,
$9=0.0,
317=0.0,
B825=0.0,

C1=0.0,
€9=0.0,

D1=0.0,

El=0.0,
£9+0.0,

Z1=0.0,

A2=0.
Al10=0.
AlB8=).
A26=0.

82=0.
Bl0=0.
Bi8=0.

826=0

D2=0

22=0

0,
0,
0,
o,

0,
0,
0,

C2=G.
C10=0.

.0,

E2=(.
£10=0.

0,
o,

0,
.

.

Q.

A3=0.0,
All=0.0,
Al19=0.0,
A21=0.90,

B3=0.0,

B11=0.0,
819«0.0,

C3=0.0,
Cl1=0.0;
03=0.0,

E3=0.0,

23=0.0,

zeta = tho*y(4)+zhop°y(6):

AL
A3
AS
a7
A9
All
Al3
AlS
Al?
AlS
A21
A23
A2S
A26
A28

3}
B3

Ad=0.0,

A20-0.0, A21=0.0, A22=0.0, A23-0.

A28+0.0;
.4'0 . 0,

C4=0.0,

04=0.0,
E4=0.0,

24-0.0,

A5=0.0, A6=0.0, A7-0.0, AR-0.0;
Al12=0.0, A13=0.0, Al14=0.0, A15-0.0, AlG-0_0:
0 :

B5=0.0, B6=0.0, B7-0.0, p8-0.
B12=0.0, B13+0.0, B14=0.0, B15-0.0, P16-0.
B20=0.0, 821«0.0, B22-0.0, D23-0.0, R2:i-n,

, ATA-0.0
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C5«0.0, C6=0.0, C7-n.0, C9-0.0;

05«0.0, D6=0.0, DI-0.0, n’-2 u;

E5«0.0, E6=0.0, E?7-0.7, ¥°-0.0;

F1=0.0, ¥F2«0.0;

dydxzeta = rho*y(S]+xhon*yi7):

~{(A=-C)*y(2]*y(3): A2
2*MT*zeta*dydxzeta*y(l): A4
~MT*SQ(zeta)*y{2)+y[3); AG
2‘n'(:cta¢&2)'yl()'ylZl'y(ll: A8
=2*m*y(4)*dydxzeta*y(l): Al10
2*SQ(y(4])): A2
-m*y{4]*a; Al4
~2"mp* (zeta-L1) *y(6}: Al6
=2%mp* (zata-L1) *y{7)*y(1]; Al8
2*mpry(6)*y(7)°y(1): A20
~mp*SQly(6))*yi2)*y(3); A22

~xp*y (6] *aprcos(sigmarx) vy (1] *y(2});

J3pesigma‘ty(2):
MT*SQ(zeta):
-2*m* (zeta+L2)*y|4):
=-2m* (zeta+l2) *y(5])*y11):
2*mey (4] *ylS)*yll):
~m*SQ(y{4))*y(2)*y)3):
-mtyld4]*aty(l)*y(2);:
2*mp* (zeta~L1)*y[6)°*y (2] ;i)
-2*mp*y6) *dydxzata‘y(l);
mp*SQ(y(6]).
-mpey[6)*aprcos (sigmi‘*y);

A24 = mprap’sin(sigreasy);

-p'.p'sinlsiqau':)°yls)'(SQ(lelosiqna)-SQ(yIZJ)):
A+AL+AG+AL1+A15+A20; A27 = A134A22;
A1¢A2‘A30A5¢A70A!¢A94A1oohl2*&14+A1605174A1006194A21*A234A?S:
=(C=A)*y(1]*y(3); B2 = ~J3p*sigmatyll):
2*¥T*zeta*dydxzetaty(2): B4 = MT*SQ(zetla);
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-2*pp* (zeta-L1) *y(6): Bl6 = -2*mp* (zeta-L))ylé *yllityIN:

| 1} MT*SQ(zeta)*y(l)*y(3): B6 = -2*m*(zetatl2)°yl[4;:

X ~2*m* (seta+L2)*y (4] *y(1])*y(3): B8 = -2'm*(zeta¢L2)ey{Si° yi?}:

1) «2*mey (4] *dydxzeta’y([2]); B10 = 2*m*y(4)°*y(5)°yl?);

311 » m*SQ(ytd})): Bl12 = m*SQiyl4))cyll) yl™

313 ~ -mty; Bl = -'a‘yl‘l'(SO(VIJI) ’"lslll))

| A
-
-
$28s83 880880

-2¢*wp* (zeta-Ll)*y{7)*y(2}: B18 = 2°mpty(6] y(2)*(yi7 -dydurnial:
319 « mp*SQ(y(6)): 820 - wp*SQ(yl(6))°yl{))‘y!";
321 -mptaptcos(sigma*x); B23 = -mprap?sin(sigma‘y) *;(6);
322 --p'ap'cos(stq-a'x)'(80(yl$l0slg-a)-so(ylll))'y(Sl '
824 mprap*sin(sigma*x)*y(6)*y(l])*yi2]); o AtBABOe 1T aRY NN
Y14 l10|2+83¢BS¢l7¢l0+3903104llzollcoll605170310+520+a?20n24
Cl « -2*m*a*y|[5])°yll}): C2 » -m*a*y(4);
C3 = mracyld]l*y(2]°yl3): C4 = -2'lp'ap's&n(siqma'-) ylir eyt
CS = -mp*ap*sin(sigma*x)*y(6]; C6 = -mprap*sin(sigma*x) y {7} yll])‘'yIY):
€1 = -2'-p'tp°cos(339nl'x);yl7l'¥ll=; C8 = -mp*ap*cos(sigma®x)-yl6]:
C - *aprcos (sl *x)eyl6)*y(2]"* }: :
Cl0 - :g+c:: e Y Y Y Cl1 = C1+C3+C4+C6+C7+4CY;
Pl e« m*{l-zho): D2 ~ -mp*rho:
D3 & -m*a: DA = m*a*y(1l}*ylld):
DS < -m*(SQ(y(1))+SQ(y(2]))*(y(4]* (1-xho)-L2-chop*y(6]): DE - ety
DT = k*yl4}: D8 = DA+DS+D6+DT;
El e« -m*zhop:; E2 = mp*(l-rhop):
E3 = mp*ap*sin(sigma®x); E4 = mprap*sin(sigmasx)*y[2])*(yi3])e2 =iym):
ES « -mp*ap®cos(sigma*x); E6 = mprap*cos(sigmarx)*yil]*(y!3]+42*siqmra);
E? = -mp*(SQ(y{1))+SQ(y(2)))*(y(6)*(1-rhop)+Ll-rhoty(4)): FP o~ oepeylil:
E9 = kp'yl$€): E10 = E4+E6+E7+EB+E9:
21 = (-(A27*B13)/(A26*B23)-E1/E3)/ ((A27*B25)/ (A26*B23) +ES/E3):
22 = (-(A27*B21)/(A26*B23)+A24/A26-E2/E3)/ ((A27+B25)/ (A26°*B23)+ES/F3):
Fl = (-(A27*B26)/(A26*B23)+A28/A26-E10/E3)/ ((A27*B25)/(A26°R23)+4Z5/E3):
23 e ({C*B13)/1C10°B23)-(A27*B13)/(A26*B23))/

((A27+825) / (R26*B23} - (C*B25) /(C10°L23)+C5/C10y:

24 = ((C*B21)/(C10°B23)-(A27+B21)/(R26*B23)+A24/A26)/

{ (A27+B2S5)/ (A26*B23) - (C*B25)/(C10*N23)+C5/CIC)
F2 = ((C*B26)/(C10°823)-C11/C10-(A27*B26)/ (A26%B23)+A28/M26)/
((A27+B25)/ (A26*B23) - (C*B25)/(C10°*P23) 1 CHICI0)

dydx (5] ({-F2-D8/D3)/ (24+D2/D3) + (F14D8/0D3) / (224D2/D3) )/

({~21-D1/D3)/(22+4D2/D3)+(23+D1/DP) /(T4 D2/DN));

dydx(7) = ((-F2-D8/D3)/(23+D1/D3)+(F1+D8/D3)/(21+D1/D3))/
((-22-D2/D3)/(21+4D1/D3) +({244D2/D3) /(734011 )} ;

dydx{3] = (dydx{S}]*(CS*B13)/(C*B2S)+
dydx[7)* ((CLO*A24) / (C*A26)+(C5°B2]1)/(C*B25) )+
(C10°A28) /(C*A26) +(C5*B26) / (C*B25)-C11/C)/
(1-(C10*A27)/ (C*A26) - (C5*B23) / (C*B25) )

dydx (1] = dydx{3}*(-A27/A26) +dydx[7]*(-A24/A26)+(~A28B/A26):
?ydx[Zl = dydx[3)*(-B23/B25) +dydx{5)* (~B13/B25) +dydx[7) ¢ (-B21/B25)-R26/N:5:

I..i.'!“'i“"."."'... mx“ Pmm "..."....'.‘..O‘IQQOIC.0‘vooll/
main()

i

int L, 3, nbad, nok:

int 111000, 12-2000, 13=3000, 14=4000, 15=5000, 16-6000, 17-7G02:

int  18=8000, 19-9000, 110-10000;

2loat eps, hl, hmin, dxsavd, x1, x2, xscale, *ystart:

float H1=0.0, H2=0.0, H3=0.0, Hlp=0.0, H2p=0.0, H3p=0.0, zcm=0.0, A:qumen::
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float
float
float
float
float
float

Lloat signec, signecp, signq, signqp, arg, argp, Ecf, Ecfp:
f£loat *Ecexp, *Ecpexp, *Ecexpdel, °*Ecpexpdel, *etah, ‘etahp:
ystart = vectorr{l, M); Ec = vectorz (!, ! \AAPRAY)
ke = véctors (1, MAXARRAY) ; Ecpdel = vectorr(l, MAXARRAY):
kedel = vectorz (1, MAXARRAY) ; Echype = vectorr (), IiAXARRAY) ;
etotal = vectorx (1, MAXARRAY) ; Echypedel = vectorr(l.i:ANAFRAY);
etotaldel = vectorr (l,MAXARRAY); Ecphype = vectorr(),tm ARPAY)
h = vectorz (1,MARARRAY) ; Ecphypedel = vectorr (1, NXAARRAY)
theta « vectorr (1,MAXARRAY) ; eta = vectorr (1, VAXARRAY) ;
hdel =~ = vectorr(l,MAXARRAY); etap = vectorr (], XARRAY)
Ecexp * vectors (1, MAXARRAY) ; Ecexpdel = vectorrx (1, XARRAY)
Ecpexp = vectorr(l, MAXARRAY) Ecpexpdel = vectorr(l, ! :ZAERAY):
etah = vectorr (], 'nXARRAY)
etahp = vectorr (1, it ARRAT)

T10.0, T2=0.0, 13-0.0, T4=0.0, T5=0.0, T6=0.0, T7-0.0, °-°.2;
79=0.0, 710=0.0, T11=0.0, T12=0.0, T13=0.0:

somcigid, It, Itp, Ittetal, 1s, Isp, Istotal, wn, lambda, lartciap;
*ke, *hedel, ‘etotal, *etotaldel, *h, *hdel, °‘theta;

*Ec, *Bedel, *Bep, *Repdel, *Echype, *Echypedel, *Ecphypr, *Feophypesk-):
Q. Qp. *eta. *etap, Ecmin, ecfactor, ecpfactor, haq, Ecfina!), Fopfiunil:

SCANT ("UENLRLULULNLNLNLULENLNLNLENENLENENENLNENLNENLNENENLOEIEL(0 e,

6x2,811,61,6M,4m, k8, £k, 6C, 6L, 611D, 613p, sMp, mp, 6ap, Sk, ¢ 2P,
Swlp, systazt{1]),Eystart {2}, cystart(3),systartid),cystar.i{5).
Systart (6], systart(7), seps, becfactor, secpfactor, 4Ecf, kE-fp) :

x1=0.0001; hl1=0.00001; haine=l.0e-11; kmax=100000:

md =~ m;

sigma

/'tco

- mp: 12 = I11: 12p = Ilp:
= wip-ystart{3]:

critical damping - input damping = 1000.0, makes jt crit:-~] **++/

if (c == 1000.0) ¢ = 1.5*sqrt(4°m*k);
if (cp == 1000.0) cp = 1.5%sqrt (4*mp*kp):

/%** establish time interval for saving data **+/

doamin » 1.0e-4;
dxlimit = (x2-%1)/1750.0;
dxsav = (x2<20.0) ? dxmin : dxlimit;

MT = MeMp+d Oomb+d . O*mbp;

v = (Mp+4.0*mbp) /MT;

A = I1+11p+2.0°7b*SQ(a)+2.0°mbp*SQ(ap) + (Mp+4.0%mbp) * (1.0-v) * =~ (5.} ;
c - 13013944.0'mb'su(c)*4.0‘mbp'$0(ap):

J3p = I3p+4.0*mbp*SQ(ap):

ho = m/MT:

Thop =« mp/MT:

u = L*(M+4.0*md) /MT;

12 = L*(Mp+4.0°mbp) /MT;

zemrigid = ((Mp+4.0°mbp)*L) /MT;

It = Il+M*SQ(zcmrigid) +mb* (4.0°SQ(zemrigid) +2.0SQ(a));
itp = 1lp+Mp*SQ(L-zcmrigid) +mbp* (4.0°SQ(L-2cmeigid) #2.04SC (n:) )
Ittotal = Iteltp:

1s ® 1344.0*md*SQ(a):

Isp I3p+4.0°mbp*SQ(ap) ;

Istotal = Is+lsp:

odctnt(yatazt.u,xl.xz,ops.hl,hnin,cnok,cnbad,dexivs,rch):

for (j=1:j<=kount:j++)
{

2Cm = ((Mp+4.0*mbp) *Lemeyp (4] () +mpyp(6) [})) /MT:
Hl = (II*H‘SQ(tCM)*n'(2.0'50(.)04.O'SQ(zcm)4so(yp|q||j;)
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-2.0*semeyp(4](3))) *yp(1] (§)-mearypl4){3)eyp(31()):

%2 = (I2+M°SQ(zcm)+m*(2.0°3Q(a)+4.0°SQ(zcm)+SQlyp(4] (3] )
«2.0%scmeyp(4) 13))) *ypl2) 1)) -meatyp(S)ij):

B3 = -meatyp(4](3)*ypl1][J)+(13+4.0°nSQ(a) ) *yp(3) [3):

Nlp = (Ilp+p*SQ(L-scm) +mp* (2.0°SQ(ap) +4.0°5Q (L-zcm) +SQ(yp(6](3})+
:.o-(s-se-)'!plcl(j)))'yptxllj)-p'ap'eo-(ltvﬂn'xnlil)‘
yP(6) [3)°yP(3) [§) -mprap*sigma*cos (sigma’xpi)))*

« ypl6) (3)+mprapesin(sigmarxpi)])) *yp(7) 13):
A2p = (xzpﬁﬂp'SO(vae-)OIp'(2.0'80(09)00.O'SQ(L-ze-)OSQ(VPIGlljl)'

2.0'(L~:c-)'¥plilljl))'yp(Z]ljl-p'lp'ain(slgnn'upljl)'

yp(6) [3)°yp(3) {J)-mpraptaigma‘sin(sigmaxp(]}))*
yYPI6) () -mpeaprcos (sigma*xp(3)) *ypl7] [3]):

E3p = ~sprap*cos(sigma*xp(3)) *yp(6) (1*yp(1]) ()] -mprap®
sin(sigma*xpl3})typ(6){3;°ypl2] [3)+(13p+4.0*mp SO (ap))*
(yp(3) () +sigms):

hi{j] = lqzt(SQ(BIOIIP)OSQ(!zouzp)#80(33033P)):

argument = (H3+H3p)/hiJ):

if (argument>0.99999999) argument = 1.0:

theta(j) = 57.2957795131%acos (argument)

hdel(3) = hij]l-hi(1):

*1 « 0.5*(X1°SQ(yp(1](3))+I2°SQ(yp([2])(3]})+I3*SQuypl3]1j))):

0.5* (I1p*SQ(ypl1) (§))+I2p*sQ(ypl2])[J]))+13p*
SQ(yp[3}[j)¢zniama)};

T2

{31))*SQ(yplal il il
Jeyp(3] (3] *ypin) L)

)

)

11131 +s0(ypl2] ()10
Jleypl3)li)eypl6) (]}
J)*yp(3) 3] *yplhl L)l :

T3 = 0.5*m* {SQiypI5)13)) +iS0typl1) [I))+S0(ypl2
-2.0%a*ypl1]t

T4 = 0.5*mp* (SQ(ypl(7)[3))+SQ(yp(6)(3])*(SQlyp
+2.0%ap*sin(sigma*xpij)) *ypl2)
=2.0%ap*cos (sigma*xpij)) *ypl(l)

TS = -m*a*yp(2}[3)*yp(S) [3):

T6 = -mp*(-ap*ypl7](3)*yp[2])1j)*cosisigma*xp[j])
+ap*yp{7} (3] *ypl1) {3 *sin(sigma*xp(}]))
~ap*sigma*yp(1) (3)*yp(6) (j)*cos(sigma*xp[]])
-ap*sigma*yp(2] (3} ypi6) [J)*sin(sigma’xp(j))

T7 = (0.5°SQ(m*yp(S):3)+mpeypl7)(3]))/MT;

T8 = (0.5*(SQ(ypl1}13))+sQiypl2](3)))
*SQ(m*ypi{4] (Ji+4mpeyp(6](3)))/NT:

T9 = 0.5¢(SQ(ypl1) [3])+SQ(yp(2)13]))* (M+4.0%m) *SQ(L) *
SQ((Mp+4.0°mp) /MT) :

T10 = 0.5°(SQ(yp(1) (1)) +SQ(yp(2) (3))) * (Mp+4.0*mp) *SQ(L) *
SQ((M+4.0*m) /MT) ;

T11 = (memp) * (-yp(S) (J))* (m*yp(5) [J)+mp*yP[7]1(3)) /MT:

T12 = -m*yp(4](J)*(SQ(ypl1) (3))+SQiypl2}(J)))*
(meyp(4) [§)+mptyp[6) {J)+ (MP+4.0°mp) * 1) /NIT;

{
!
{

):
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- syplé . 1113 +sQtypl2) 1))
TI3 = epypl6) (310U NSRRI IS

kel3) @ T10T24TIoTE+TS+T64TT+TOITICTIO+TILTI2 T Y
kedel( 3] « keljl-keil]:
etotal (]} o ke(§140.5°k*SQ(yp{41(3])+0.5*kp*SQiyplh)Lil):

ceotal@clljl = qtotal(j)~etotal(l}:

Ec(3) « 0.5*(Ittotal* (SQ(ypl1}(§})+SOUypi2]1]))) )
+Istotal *SO(ypitl il

Ecdel()] = Eclj}-Ec{l):

Ecpll) = 0.5°(Ittotal*(SQ(ypll])iJl)+SQ(ypl2])13))) .
+lstotal*SQ(ypl3)lileniama)):

TGPGOII)) = Ecpli]-Ecpll):

wn « (Is*yp{3](1]}+Isp*(ypi3}(1)+sigma)}/Ittotal;

lambds = wn-ypildlil):

lambdap = wn-(ypid)(1l)+sigma);

hsq = SQ(Ittotal)*(SQ(yp{l])(1])+SQtypl2](1]))
+SQ(Is*yp(3] [1)+Isp* (yp(3]) {1 ]15inmN}:

4f (thetalkount)-thetafl) < 0.0) /**** stable condition ¢*°*/
{ .
if (lambda < 0.0) { signec « 1.0; signq ~ 1.0: |
else { signec = -1.0; signq = ~-1.0: |
if (lambdap < 0.0) { signecp = 1.0; signgp =~ 1.0: )
else { signecp = -1.0; signqp = -1.0: |
)

slse /**** unstable condition °***/
{
if (lambda < 0.0) ( signec = -1.0; signq = 1.0; }
else { signec = 1.0; signq = -1.0: )
if (lambdap < 0.0) { signecp = ~1.0; signqgqp = 1.0: )
else { signecp = 1.0: signqp = -1.0: )

)

Ecfinal = (Ecf == 0.0) ? Eclkount) : Ecf:
Ecptinal = (Ecfp == 0.0) ? Ecplkount) : Ecfp:

for (j=1: j<=kount; j++)

{
Echype[]) = Ecf{l])*Ecfinal/(Ec{i}+(Ecfinal-Ecll))*
expl{ecfactor*Ecfinal’xpi)l)):

Echypedel (j) = Echypelj)-Echype(l]):

Ecphypel]) = Ecpll)}*Ecpfinal/(Ecp{l]}+(Ecpfinal-Ecpll))*
exp(ecpfactor*Ecp:{inal*=pl 1))

Ecphypedel(j] = Ecphype(j)-Ecphype(l):

Q = 2.0*Echype[j])*Istotal®(1.0-(Istotal/Ittotal))
~hsq* (Istotal/Ittotal) *(1.0-(Istotal/Ittotal))
+(Istotal/Ittotal)*SQ(Isp)*SQ(sigma):

Qp = 2.0*Ecphype!j)*Istotal*{1.0-(Istotal/Ittotal))
~hsq* (Istotal/Ittotal)*(1.0-(Istotal/IttntAl})
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*(Istotal/Ittotal} *SQIN) *SQ(nigmr);

arg = ((Ittotal/(Ittotal-1stotal))
*((Isp*sigmal ¢+ (319aq sarl (01)) )/ (=it (L)),
if (azg > 0.99999999) arg-1.0:

etahl|)) = 57.2957795131%acos (arg):

azgp = {({Ittotal/(Ittotal-Istotal))
*((-Ts*sigma) ¢+ (signqp sqrt (Op) 1))/ (oegr b (heeghd
if largp > 0.99999999) argp-1.0:

stahp( ] = 57.2957719S5131%acos(azgp):

Ecexpl]] = (Ecll)-Ecfinal)*exp(ecfactor*xplj)) +Fclinal:
Ecexpdel(§] = Ecexp(j)-Ecexp(l}):

Ecpexpii] = (Ecpll)-Ecpfinal) *enplecplactor*xpl))) tFepfinal;

Ecpexpdel [j! = Ecpexp(j)-Ecpexpil]):

Q ‘= 2.0%°Ccexpijl*Istotal®(1.0~(Istotal/IttoLal))
-hsq* (Istotal/lttotal) *(1.0-(1Istotal/Itrtoval)}
+(Istotal/Ittotal)*SQiIsp) *SQ(sigma);

o = 2.0*Ecpexp(j)*Istotal® (1.0-(Istotal/Ittotal))
~h3q* (Istotal/Ittotal) *(1.0-(Istotal/Ittmral))
+(Istotal/Ittotal) *SQ(Is)*SQisigma);

arg * ((Ittotal/(Ittotal-Istotal)}
*((Ispesigma)+ (signq*sqrt (Q))) )/ (3qit (hany):
if (azg > 0.99999999) arge=1.0:

ezalil] * 57.2957798131%acos (axq) :

azgp = ((Ittotal/(Ittotal-Istotal))
*((~Is*sigma)+(signqp*sqrt (Qp))) )/ (zqei (ka1 ) :
if (argp > 0.99999999) argp=~1.0:

ezapl]) * 57.2957795131%acos (argp) :
}

"OQ'OOOQQQ'. init‘.liz‘ 9:.phic‘ .ﬁ..‘l.."./

init(): color_scale “cyanblue™):

grey scale(“greyscale."): window0();

bgeol(7): erasel): =slor(0):

move (220, -3110); printI("MINGORI DUAL SPINNER MASS SPRING SYSTEN™):

window(22,~85,979,83:; bgeol (3);
erase(); scale(0,10272,10000,0):; zect (0,0,10000,10000);
size(2,1);
~3ve (20,110+200) ; datef();
“ove(~160,110470); printf(“0%):;
~Ive(10,110-90); printf (“wl - w3 jinitial~):

vactor(0,25,110,19): -~>ve(-160,15+70): printt(~0");
“ove(10,19+200) ; printf("w2"):

vector(0,18,110,18); r>ve(~160,18+70); printf (“0%);
~ove(l10,18+200); printf(®wlv):
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vocter(8.17,110.17): move(~160,17¢M0): pristf(®0"):
move (10,17+200): priatl(®z prime doL™):

vecter{0,16,110,16): move(~160,16¢70): printf(=0%):
move (10,16+200); priantf(®z prime™):

vector(0,15,110,15): move(~160,15+70);: priatf(~0"):
move (10,15+4200): priatf(“z dot®):

vector(0,14,110,14); move (~160,14470); printf("0");
. move (10,14+4200); printf(“z”):

vectoxr(0,13,110,13): move (~160,13+70); printf(*0%);
move (10,13+200); printf(“ke-ke i (r), e-c i )"):

vegtor(0,12,110,12): move(~160,12+70): printf(“0"):
move (10,12+200) ; printf(“Ec~E¢ i (r)., Echypc-Echype & (b)™"):

vector{0,11,110,11): move(~160,11+70); printf(=0%};
move (10,11+200) ;: pxiatf(“Ecp-Ecp i (r), Ecphype-Ecphype i () ™):

vector(0,0,110,0): move(~160,0+470);: printf("0"):

move (10,0+200); printf(“theta, eta (b), etap (r), h ~ h initi.ei"):
vector(0,19+750,.11,19+750); vactor (19,19+4750,110,19+750);
vector(0,19+500,11,19+500); vector (19,19+300,110,19+500);
vector(0,19+4250,11,19+250); vector (19,19+250,110,19+250):
vector (0,19-250,11,19-250); vector(l9,19-250, 110, 19-250):
vector(0,19-500,11,19~500); vector(19,19-500,110,19-500):
vector(0,10+2%0,11,10+250): vector(l9,16+250,110,18+250):
vector (0,18-250,11,18-250); vector(19,18-250,110,18-~250);

vector(0,18-500,11,18-500); vector(19,18-500,110,18-~500):
xscale = 10000.0/xp(kount); ‘

color (1) : /%¢¢°* blue - total energy, rotor hype ****s/
for (3=1:j<kount:js+)
{

vectoz((int) (xscale*xp(3]). (int) (13+(0.01%etotaldel{j])),

{int] (xscale*xp{j+1]), (int) (13+(0.01egtotaldel{j+1])));
vector((int) (xscale*xp(3)), (int) (13+(0.1%etotaldel{j})),

(int) (xscale*xp(j+1]}), (int) (13+(0.1%etotaldel [§+1])}):

voctox((int)(xscalc'xpljl).(int)(120(50.0'2chypede1ljl)).
(int) (xscale*xp(3+1]), (int) {12+ (50.0°Echypedel|j+1])));

vector({int) (xscale*xp{j)), (int) (0+(100.0%etah(3]))),

{int) (xscale*xp{§+1]), tint) (0+(100.0¢etan[§+1]))}):
vector ((int) (xscale*xp(3]), (int) (11+(1000.0%etah(j])),

{int) (xscale*xp{j+1)), {int) (12+(2000.0%etah[j+1}1)):

}

color (S); /***** purple - platform exponentialesese/
for (j=1: j<kount: jee) P po
{

vcc:o:((int)(xscalo'xp())).(tnt)(110(50.0'8cpexpde1(jl)).
tint) (xscale*xp{j+1]), (int) (11+(50.0*Ecpexpdal{jr1j)));

voc:o:((int)(xsealc'xplj)).(in:)(00(100.0'¢tapljl)).
{int) (xscale*xp{j+l]), (int) (0+(100.0%etapl)+l}))):
vccto:((int)(xscalc'xplj)).(tnt)(110(1000.0'0tapljl)).
(1nt)(xsealc'xp[j01)).($nt)(110(1000.0‘etap|jfll)l):
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coloz{6): /%%°** yellow - rotor eaponentialecct¢/
for (j=1:j<kouat; je-!
(

vector ((int! (xscale*xp(J]), (int) (12+(50.0*Ecexpdel(jl)),
(in3! (xscale*xp{jel)), (int) (12+(50.0%Ecexpdel fjeiliir:

vector{(int) ‘xscale*xpl3}), (int) (0+(100.0%eta(j]}).
. (int) (xscale*xp(§+1]), (int) (0+(100.0%etal jell))}:
vector { (int) ixscale*xp(j]), (int) (11+(1000.0%cta(]]}},
(4n2’ (xscale*xp{3j+1]), (int) (11+(1000.0%ctajr1))1):

color (0) ;- /***** black - platform hyperbolic **+¢*¢/
for (3=1; j<kount; j++;
{

vector ((int) (xscale*xp(j)), (int) (11+(50.0*Ecphypedel|j])).
{in2) (xscale*xplj+1]), (int) (114 (50.0°Ecphypedel [j111))):

vector((int) (xscale*xpi{i})., (int) (0+(100.0%etahpi{jl)),

(int} (xscale*xp({j+1]), (int) (0+(100.0%etabhp(3*11))}:
vector((int) (xscale*xp(3])). (int) (11+(1000.0etabpijl)),

(int} (xscale*xp(j+1]), (int) (11+(1000.0%ctahp(j*1])}):

) .

color (4): /*°*°** ged - rotor **eete/
for (3=1;j<kount; j++}

{
vector({int) (xscaie*xp(j)), (int) (110+(1432.39448783(yp(3)1j)-vpriX]LI1I D),
{int) (xscale*xp[i*1)), (int) (1104 (2432.39448783*(yp(3) [j+1)-yplI) (2] }):

vector ((int) (xscale*xp(§]), (int) (19+4(1432.39448783yp(2)(j})).
(int) (xscale*xp(j+1)), (int) (19+(1432.39448782*yp(?2]){j'1iN):

vector((int) (xscale*xp{j]), (int) (18+(1432.39448783*ypl(1)(j})},
{int) {xscale*xp[j+1]), (int) (18+4(1432.39448783*yp(2]{i*1!1)}:

vector((int) (xscale*xp{jl), (int) (17+(1000*yp(7)(j})),
(int! (xscale*xp(3§+1]), (int) (174 (1000*yp(T7])15+1}1)):

vectoz ((int) (xscale*xp(J]), (int) (16+(1000°ypi6)(3])).
(int) ixscale*xp(j+1])), (int) (16+ (1000*yp(6])(j+1)))):
ve  cx{{int) (xscale*xp(3])), (int) (15+(1000*ypI5)13))),
(int) (xscale*xp{j+l])), (int) (154 (1000*ypiS){j*1}))):

vestor((int) ixscale*xp(j)), (int) (14+(1000*yp(4](j])).
(int; .xscale*xp(j+1]), (int) (14+(2000*yp(4){j*2])))):

vector ((int) (xscale*xpl3]), (int) (13+(0.02*kedel(j))),

tint) .xscale*xp{j+1}), (int) (13+(0.01*kedel[j+1))1):
vector ((int) (xscale*xp(3]), (int) (13« (0.1*kedel[]])),

(int) ‘xscale*xp[j+1])), (int) (13+(0.1%kedel [j+1]))):

vector({int) Ixscale*xp(j)), (int) (12+(50.0%Ecdel(}])),
{int) .xscale*xplj+l]), {int) (12+(50.0*Ecdel(j*1])))):

vector ((int) (xscale*xp(J]), (int) (11+(50.0*Ecpdel(j)}),
(int) (xscale*xp(3+1]), (int) (11+(50.0*Ecpdel[ji11})1):

vestoz ((int) (xscale*xpl3])., (int) (0« (2000.0%hdel(]])),
(int) ‘xscale*xp(j+1)), (int) (0+(1000.0°hdel[e11))):
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vector{tint) (xscale*npl i)}, (int) (0+(100.0%Lheta{j)}).

(int) (xscale®xplje1)), tint) (0+1100.0%thetat el :
vector((int) (xscale*xplj)), (int) (114 (1000.0¢thetalil)),

tint) (xscale*np{4+1)), (int) (11¢(1000.0¢thetaljr11))):

/* vector ((int) (xscale*xp(3])), (int) (04 (0.0001ke(}]}}).
{int) (nscale*xp(§+1)), (int) (0+(0.00014kel j*1}1)):

./

/¢ T vectort((int) (xscale*xpi})), (int) (0+(0.0001%etotallj])).
(in2) (nscale*xp(3+1]), (int) (0+(0.0001°ctotal{j¢I}}}):

e/

/* vector ((int) (xscale*xp(3)), tint) (0+(0.1¢h(3])),
{ing) (xscale*xplj+d)), (int) (04(0.1°h{j+1)))):

./

. )

windowl () :

color (0):
/°** print initial, final data °**¢/

move {330,873%); printl(™ INITIAL CONDITIONS kount - Td”,knunt )

/'
move(22,910);: printf(“time =33.0f seconds”,xpikount]);
move (500,930); printf(“eps = Ve Vd/Vd",eps,nbad,nok):

move (22,940) ; .
Printf ("Nl «34.2f W2 =%4.2f W3 =%4.2¢",ypl(1] (1), ypl21 1] . yplR]ill):
move (500,940): printf(“wip= 49.7¢ L« %3.1£%,w3p,L):

move (22,980); printf("I1 =%4.0f X2 «%4.0f 13 »%4.0£%,11,12,1%):
move (22,1010); printf("™ = $4.0f m =32.5¢f",M,m);

move (22,1040); printf(®a =84.1f Kk =84 1f ¢ =%4.1f",a.k,c);
move (22,1070);: printf(®z =%4.2f z2dot=84.2f(" ypl4]) (1], yp(S51(1]):

wove (500,900} ; printf("Ilp=%4.0f I2p=V4.0f IIp=%44.0f",Ilp,12p,IdM:
move (500,1010); printf(“Mp =%4.0f mp=\7.5(",Mp,mp);

move (500,1040); printf(“ap=%4.1f  |kp=S4.1lf cp=%4.1£", ap.kp.cp):
move (500,1070); printf(“zp «%4.2f zdotp =V4.2f%,ypl61(1],yp(?}(1]):

nove(22,1110); printf("h {=49.4f ke $i=%7.3f%",h{l},kefl})):
move (22,1135);: prinif("h f=39.4f ke f=%37.1f" hlkount],kelkount]}):
move (22,1160); printf(“hdelper=V5.2£%,100.0°(h[kount])=-h{1))}/h{1])):
move (250,1160);: printf(“kedelper=%5.2£",100.0* (ke(kount]=-kel{l])/k~(1]}:
move (500,1160);
printf (e cdelper=45.2£",100.0*(etotal{kount]-etotal{l})/ntotalll)y:
move(730,1160); prinif("Ecp delper=%5.2£",100.0*(Ecplkount]-Ecp|1])/Eepll]):

move (500,1110): printf(”Ec i=%9.4f theta i=V7.5f",Ec(l],theta()|):
move(500,1135): printf("Ec f=49.4f theta f=V7.5f",Ecikount], thetafkount |):
./

cove(22,900);: printf(" platform rotor"™):
move (22,920);: printf("Ilp « $6.2£%,11p);

move (240, 920); printf(“Il - $6.2¢%,11);
move (22,940); printf("I3p = $6.2£%,13p):
move (240, 940); printf(“13 - $6.22£%,13);
move(22,960);: princf(“Mp = $6.2¢%,Mp);
move (240,960): prints("M » 36.22%,M);
move (22,980); prints(“mp = 86.2£",mp);
=ove (240,900); printf(*m - $6.2f",m);
=ove(22,1000): prints(“ap - $6.2f£%,ap):
aove (240,1000) ; printi(“a = %6.2£%,2);
move (22,1020);: prints(“kp = %6.2£",kp):
move (240,1020): pzintl(™k - $6.2¢%,k);
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move (22,1040): printt(“cp - 36.2(",cp):
move {240,1040): printf(“c \6.21%,¢c):

46.4€", L)

move (22,1060); printf("L
V6. 3f", Istotal/Itrotal);

move (240,1060): pxintf(~Is/1t

V6.2, ypl6)11)):
V6.2, yplal (112
v6.2¢", ypl?)1l1)):
V6.2, yplIS)ILI]):
V6.20", yplI)(1])+4sigma);
v6.2¢", ypl3) (1))
\6.2f", yplll{l)):
\6.21", ypl2)1))):

move (22,1100): printt(“2p
move (240,1100): printt(“z
move (22,1120): printt(“dzp
move (240,1120): printt(~d:
move (22,1140) ;- printf("wip
move (240,1140): printf(“wd
move (22,1160); princtf(*wl
move (240,1160): printf(~w2

move (480,900): printf("%3.0f seconds”™, xplkount)):
move(730,900): printf("h & = $9.4£%,h{1)):
move (480, 920);: printf(~"sd / \d / %d",nbad, nok, kount) :
move {730,920): printt("h £ « $9.4£%, hi{kount])):
msove (480, 940): printf(“eps « \7e",eps):
sove (7130,94C): printf(“hdelp = $5.3£%,100.0*(h{kount]-h{1]} /izj?!}:
move (¢80,960): printf(“ke = %3.42%,ke(l)):
move(730,960); printf(“e 1 = V9.4f% etotal{l}]):
move(480,980); printf(“ke f = 39.4£", ke{kount)):
move(730,980); printt/~e ¢ = %9.42%,etotallkount)):
move (480,1000): print’ ("kedelp = 35.3£%,100.0*(ke{kount)-kefl])/t~[l}};
sove (720,1000):
printf(“edelp = 45.31",100.0*(etotal{kount]-etotal{l]}smtntalfiyy:

move(480,1030); printf("Ecpi

= V9.3f",Ecpll]):
move (730,1030); printf(“Ec { - $9.3f",Ec(l)):
move (480,1050): printf(“Ecpf = %9.3£%,Ecpikount]):
move(730,1050): printf(“Ec £ = %9.3f"%,Ecikount));
move (480,1070); printf(“lambdap = $5.3f", lambdap):
move (730,1070) : printf(“lambda = \S5.3f", lambda):
mova (480,1090): printf("signgp = V5.2f%,signgp):

move (730,1090); printf(“signg = V5.2f£",signq);
move (480,1110); printf(“dEcp/lsmbdap= $6.3f", (Ecp(kount}=-Ecpl1})/lamiap) :
move(730,1110): printf(“dEc/lambda = %6.3f", (Ec{kount}-Ec|1})/}amtrin):

move(480,1130): printf(“Ectp = %8.6£",Ecfp):
move (730,1130): printf(“Ecf = $8.6f",Ecf):

move (480,1155): printf(“theta i =%36.2f",thetall]):
move(620,1155); printf("etap i =46.2£",etap(l]):
nove(760,1155): printf(“eta i =%6.2f",eta(l)):

move (480,1175);: printf("thets £ =\6.2£",thetaikount)):
move (620,1175); printf("etap £ =\6.2f",etaplkount]):
move (760,1175); printf(™eta £ =%6.2f", etalkount]}):

/*** upper xight hand corner ***/
move (600,-33); printf(“Ec initisl/final = g / Vg*,Ec(1],Ec{kount!):
move(600,-13): printf(“Ecp initial/final = Sg / Vg“,Ecpll),Ecplkeount.i):
move(600,27): printf(“Ec factor / Ecf = Vg / Vg“,ecfactor,Ecf};
move (600,47).; printf(“Ecp factor / Ecfp = Vg / Vg".ecpfactor,Fc/p):

move (980, ~33): printf(*sd”,nbad):
move (980,-13): printf(“vd”,nok):;
Pove (980,7): printf(“\d", kount):
move (980, 27): printf(“nbad”):
move (980,47): printf(“nok"):

move (980,67): printf(“kount"):

move(980,97): printf("%6.4£*, (100.0° (kelkount)-ka{l]))/kell]);
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move (980.117);
move (980,137) ;

move (960,157) :
move(980,177);
move (980,197) :

move (980,227);
move (980,247):

move (980,267) ;-
move (980, 287);

move (960,317):
move (960,337);

no‘vo(”O. 357):
move (980,377);

move (980,407);
move (980, 427);

move (980, 447) ;
move (980, 467) ;

move (980, 497);
move (980,517);
move (980, 537);

move (980, 557) ;
move (980,577);
move (980, 597);

move (980, 627) ;
move (980, 647)
move (980,667) ;

move (980,687)
move (980, 707);
move (980,727) ;

move (980,757) ;
move (980,777);

free_matzix(yp,

free_vector (xp, 1, MAYARRAY) ;
free_vector (ystart,i,N);

free_vector (ke,

Printi ("V6.4£%, (100.0° (etotal (kount j-atotal 111}/ etal (Th):
pttntt('\i.‘t'.(lO0.0'(hlkountl~hlll))IhllI):

princf ("kedel®):
printf (“edelp®):
printf (“"hdelp*):

printf ("Vg”, theta(l]}):
printf ("\g", theta(kount)):

printf("th 1%);
prinif(“th £"):

printf (“Vg",etal(l)):
printf(“Vg”,etalkount]):

prinzf(“ets 1%):
princt (“eta £%);

printf(“\g",etapll)):
printf (“Vg",etaplkount]):

printf(“etapl”):
prinif(“etapf”);

printf("Sg=", Ec(kount)-Ec(l]):
printf (“\g", lambda):
printf(“Vg”,signq);

printf ("Ecdel”):
printf(“lambda”):
printf(“signg”):

printf (“sg",Ecplkount)-Ecpll])):
printi(“\g", lambdap)
printf("Ng",signqgp):

printl (“Ecpdel®):
pzintf (“lambdap”):
printf (“signgp™):

printf(“Vg™”, Istotal/Ittotal):
prirti("Is/It");
1,5, L, MAXARRAY) ; free_vector (Ec, 1, MANAFPAY) ;
free_vector (Ecdel, 1, MANAPELY) ;
free_vector (Ecp, 1, MAXERPAT) ;

1, MAXARRAY) ; free_vector (Ecpdel, 1, VAXAFRAY) ;

free_vector (kedel, 1, MAXARRAY) ;
free_vector (etotal, 1, MAXARRAY) ;
£xee_vector (etotaldel, 1, MAXARRAY) ;
fxee_vector (h, 1,MAXARRAY) ;
free_vector (theta,l,MAXARRAY) ;
free_vector (hdel, 1, MAXARRAY);
free_vecto:z (Ecexp, 1, AXARRAY) :
free_vector (Ecpexp, 1, MAXARRAY);
free_vector (etah, 1, MAXARRAY) ;

}

free_vector (Echype, 1, MAYAFTRAY) :
free_vector (Echypedel, 1, HAXAREAY)
free_vector (Ecphype, 1, MAXAFPAY)
free_vector (Ecphypedel, 1, itaXARRAY) :
free_vector (eta, 1, MAXAPRAY) :
free_vector (etap, 1, MAYARPY) ;
free_vector (Ecexpdel, 1, 1AZATHAY)
free_vector (Ecpexpdel, 1, NAZARRAY)
free_vector (ctahp, 1, MALAREAY) ;
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